Topic 05 drug repurposing for cancer cell lines

Carl Herrmann / Ana Luisa Costa



Medizinische Fakultät Heidelberg

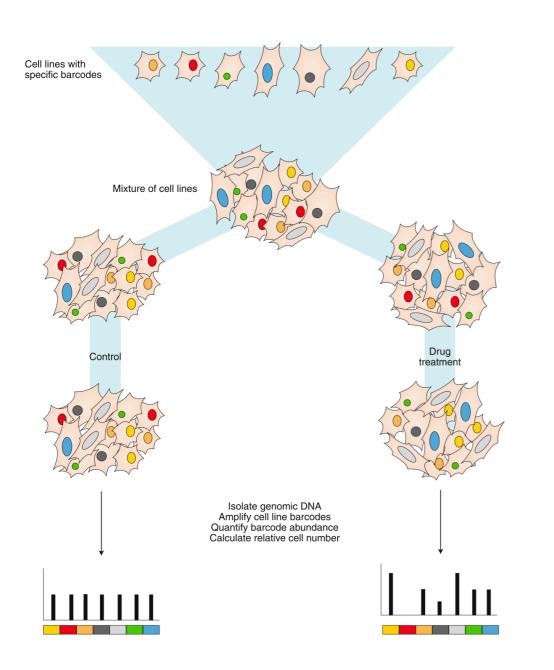
Carl Herrmann

Health Data Science Unit - Medizinische Fakultät Heidelberg

Strategies for drug repurposing

- Experimental/computational strategies for pre-screening of drug
 - matching signature profiles: which genes are affected by a specific drug? does this correspond to genes differentially expressed in a specific disease?
 - using clinical data based electronic health records
 - phenotypic screens using large
 libraries of celllines and molecules

[Pushpakom et al., Nature Reviews Drug Discovery]



- Large-scale screening effort by Broad Institute focussed on cancer cell lines
 - cell line expression profiles (RNA-seq)
 - Sensitivity to CRISPR/Cas9 gene knock-out
 - Genomic profiling of cell lines (single-nucleotide variation SNV / copy-number variations - CNV)
 - Drug sensitivity (cell growth/survival expression profiles)

[Boehm et al., Nature (2021)]

https://depmap.org

PRISM methodology for screening Wedizinische Fakultät Heidelberg

[Yu et al., Nature Biotechnology (2016)] [Beijersbergen, Nature Cancer (2020)]

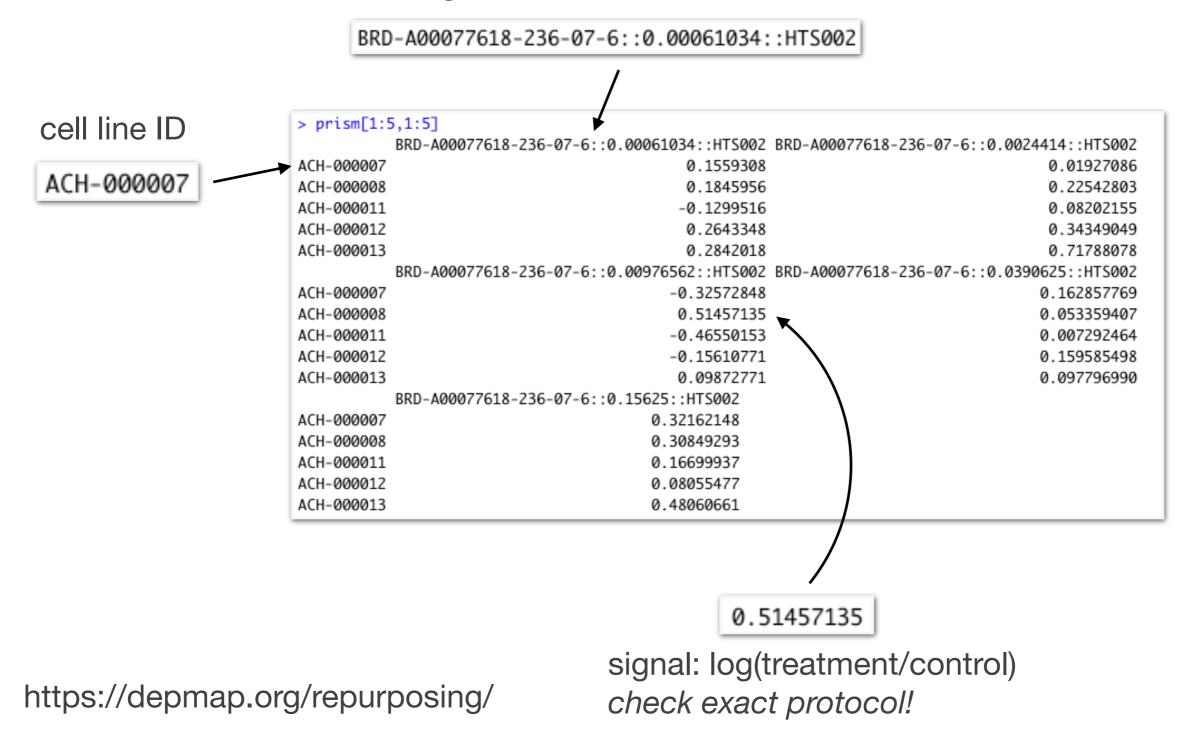
- Plate based assay
- each cellline has a specific
 barcode → mixture of celllines
- each well corresponds to a specific drug/concentration/condition
- amount of barcode is determined through colored beads (imaging assay)
 - treatment condition
 - control condition
- Ratio of treatment vs control indicates the effect of the drug on a specific cell line!

Large-scale screening

nature cancer

Discovering the anticancer potential of nononcology drugs by systematic viability profiling

Steven M. Corsello[®]^{1,2,3}, Rohith T. Nagari¹, Ryan D. Spangler¹, Jordan Rossen¹, Mustafa Kocak¹, Jordan G. Bryan[®]^{1,6}, Ranad Humeidi¹, David Peck¹, Xiaoyun Wu¹, Andrew A. Tang¹, Vickie M. Wang¹, Samantha A. Bender¹, Evan Lemire¹, Rajiv Narayan¹, Philip Montgomery¹, Uri Ben-David[®]^{1,7}, Colin W. Garvie¹, Yejia Chen¹, Matthew G. Rees[®]¹, Nicholas J. Lyons¹, James M. McFarland¹, Bang T. Wong¹, Li Wang^{1,8}, Nancy Dumont¹, Patrick J. O'Hearn^{1,9}, Eric Stefan^{1,10}, John G. Doench[®]¹, Caitlin N. Harrington¹, Heidi Greulich¹, Matthew Meyerson[®]^{1,2,3}, Francisca Vazquez¹, Aravind Subramanian¹, Jennifer A. Roth¹, Joshua A. Bittker[®]^{1,11}, Jesse S. Boehm¹, Christopher C. Mader^{1,12}, Aviad Tsherniak[®]¹ and Todd R. Golub[®]^{1,3,4,5*}


- 4518 drugs tested on 578 human cell lines
 - 77% are non-oncological drugs
 - 21% targeted oncology agents
 - 2% chemotherapeutics
- 2 stage screening strategy
 - first stage: single-dose screening \rightarrow 1448 positive drugs
 - second stage: 1448 drugs were rescreened with various doses

February 2020

Structure of the data

Drug ID::concentration::screen

Carl Herrmann

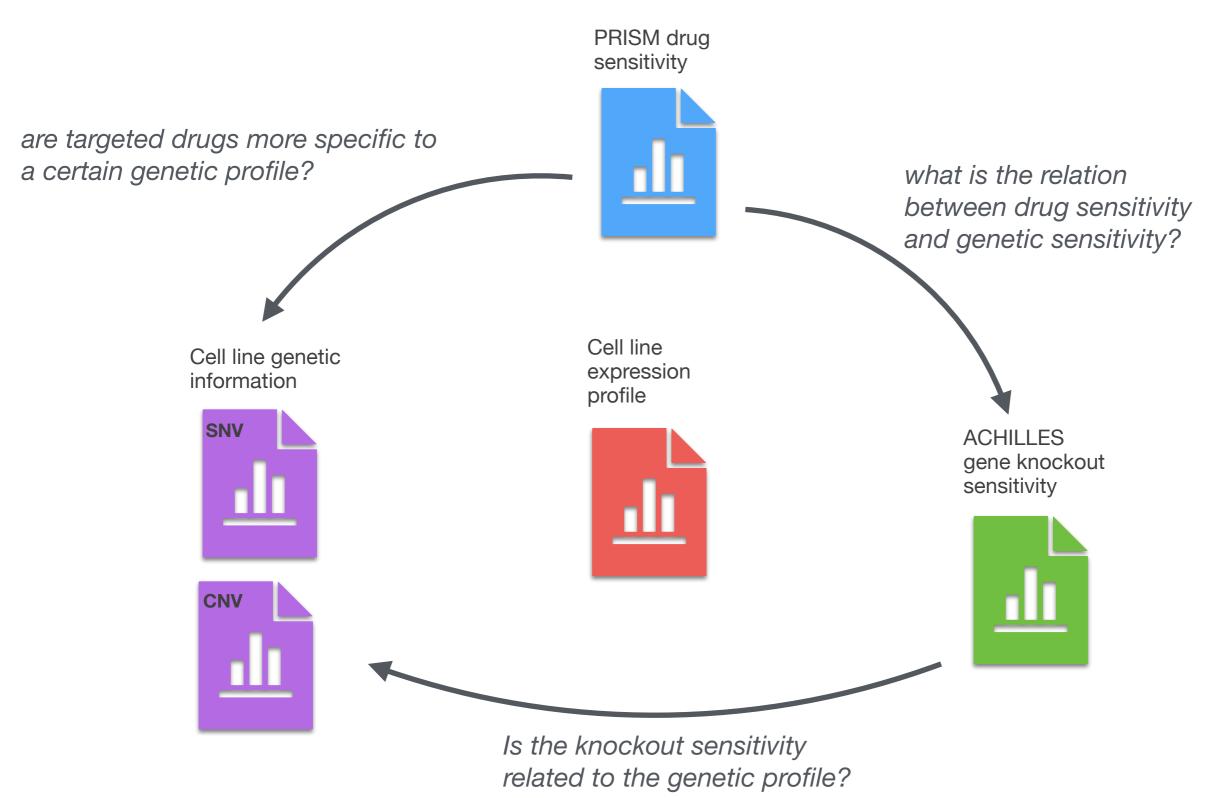
Health Data Science Unit - Medizinische Fakultät Heidelberg

Complementary dataset

- ACHILLES Project (part of DepMap)
- CRISPR/Cas9 gene knock-out screen on cancer cell lines
 - 18,119 genes
 - 808 cell lines
- Can be used to investigate the relationship between drug and genetic sensitivity!

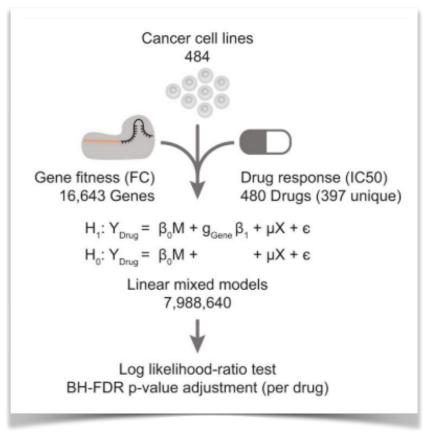
Datasets

- The datasets are available as **R objects** (see project description here https://github.com/datascience-mobi/01_DrugSensitivity_2021)
 - Drug sensitivity screen (PRISM dataset)
 - Gene knockout sensitivity screen (ACHILLES data)
 - Genetic data on the cell lines
 - SNV profiles
 - CNV profiles
 - Expression profiles of cell lines
 - Metadata on
 - cell lines
 - drugs


Biological questions

- Which are the non-oncological drugs that are efficient on cancer cell lines?
 - in general
 - for a set of tumor specific cell lines (lung tumor / skin / ...)
- How do drugs / cell lines cluster with respect to their sensitivity profiles?
- What are the most **predictive features**?
 - single-nucleotide polymorphisms / copy-number variations in cancer cell lines
 - gene expression profiles?
 - sensitivity to knock-down?
- Sub-projects: focus on cell lines for a specific tumor type

Biological questions


Health Data Science Unit - Medizinische Fakultät Heidelberg

Relation drug sensitivity/gene sensitivity?

Medizinische Fakultät Heidelberg

Drug mechanism-of-action discovery through the integration of pharmacological and CRISPR screens

Emanuel Gonçalves¹, Aldo Segura-Cabrera², Clare Pacini¹, Gabriele Picco¹, Fiona M Behan¹, Patricia Jaaks¹, Elizabeth A Coker¹, Donny van der Meer¹, Andrew Barthorpe¹, Howard Lightfoot¹, Tatiana Mironenko¹, Alexandra Beck¹, Laura Richardson¹, Wanjuan Yang¹, Ermira Lleshi¹, James Hall¹, Charlotte Tolley¹, Caitlin Hall¹, Iman Mali¹, Frances Thomas¹, James Morris¹, Andrew R Leach², James T Lynch³, Ben Sidders³, Claire Crafter³, Francesco Iorio^{1,4}, Stephen Fawell⁵ & Mathew J Garnett^{1,*}

• How does drug sensitivity relate to knock-out sensitivity?

First steps

- Download the datasets
- Open them in R
- Perform some descriptive statistics!
 - o plots
 - summary statistics
 - ••••
- Get an impression for the data!
- More advanced users:
 - ggplot2
 - tidyverse