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Single-cell sequencing
50

Bulk sequencing

[Shalek & Regev, 2016]

Single-cell sequencing
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Single-cell sequencing

[10x genomics]
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Adrenal medulla
52

single-cell RNA-seq of

developping adrenal medulla

[Jansky et al., Nature Genetics 2021]
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Tumor heterogeneity
53

Glioblastoma

malignant cells

non-malignant cells
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Single-cell regulatory genomics
54

[Kelsey et al., Science (2017)]
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Single-cell multi-omics
55

transfer learning 
find best mapping 
between cells from 

different assays

scRNA-seq scATAC-seq
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Single-cell multi-omics
56

Accessibility & expression

[Cao et al. 2018] 
[Clark et al. 2017]

[scCAT (Liu et al. 2019)]

scATAC-seqscRNA-seq
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single-cell Multiome: ATAC / Expression
57

cluster structure is slightly 
different between scATAC and scRNA!

scRNA-seq scATAC-seq
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Single-cell multi-omics
58

[Zhou et al., Nature Methods (2020)]

CITE-seq: identification

of surface proteins 

+ scRNA-seq

scNMT-seq: identification

of DNA-methylation

+ accessible DNA
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Gene regulatory networks (GRNs)

• Transcription factors (TFs) can regulate multiple 
genes


• Genes can be regulated through multiple 
transcription factors 


• These TF → target interactions are cell type and 
context specific!


• All interactions form a gene regulatory network 
(GRN)

59

http://califano.c2b2.columbia.edu/modeling-cell-regulatory-networks

TF

G2G1

G3

G4

Gene 1

Gene 2

Gene 3

Gene 4

TF

TF

TF

TF

TF

TF



Carl Herrmann		 	 	 	 	 	 	 	 	 	 	

Gene regulatory networks (GRNs)
60

http://califano.c2b2.columbia.edu/modeling-cell-regulatory-networks

Gene regulatory network controlling the mesenchymal signature  

Gene regulatory network controlling the mesenchymal signature  
of high-grade glioma
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Context dependent GRNs
61

Effect of interferon 
treatment on cells

Interferon leads to 
rewiring of GRN
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Computing TF activity
62

TF

G2G1

G3
G4

Target genes are lowly expressed 
→ transcription factor is lowly active

TF

G2G1

G3
G4

Target genes are highly expressed 
→ transcription factor is highly active

• Transcription factor activity can be defined through the expression 
of the target genes of a TF


• This is a proxy for the protein activity (e.g. phosphorylation state of 
the transcription factor)
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Computing TF activity

Transcription factor activity highlights cell type specific transcription 
factors → master regulators



Carl Herrmann

3. reconstructing gene regulatory 
networks
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Reconstructing GRNs
65

Stat3 Gene

Stat3

real binding site

Stat3 Gene non functional 
binding site

Stat3

Stat3 Gene non accessible 
binding site

Stat3
Gene

distal  
binding site

Gene

? Stat3
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Protein DNA interactions

• majority of protein-DNA interactions for TF 
occur through a alpha-helix fitting into the 
major groove (=DNA binding domain)


• hydrogen bonds with specific bases


• stabilization of the protein-DNA complex is 
ensured by additional structures (helix, 
beta-sheet) via van der Walls interactions

[Luscombe et al., NAR (2001)]
[Cheng et al., JMB (2003)]
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Structural family: Zinc coordinating

cysteine

histidine

Egr1/Zif268

Finger 1

Finger 2

Finger 3

Cys2His2 Fold (“Zinc finger”) 
→ one of the most common family

of transcription factors in mammalians

Finger 1 Finger 2 Finger 3

67
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Transcription factors
68

CATGGAGTC

CAT
GTT

GTC

CATGGACTC

CACGTGGACTC
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Identification of binding sites using  
ChIP-seq

1. Binding with transcription factor specific antibody


2. Sonication or fragmentation of the chromatin

69
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Identification of binding sites using  
ChIP-seq

70

3. Pull-down 4. DNA purification 5. Sequencing
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ChIP-seq sequences
71

ChIP-seq: 
 
real binding site is hidden 
in much longer sequence
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Different sources

ChIP-seq: real binding

site is hidden in much

longer sequence

→ lower resolution

72
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Predicting binding sites in sequences

a|  0.55  0.02  0.95  0.02  0.95  0.95  0.02  0.95  0.02  0.88  0.75
c|  0.08  0.02  0.02  0.48  0.02  0.02  0.02  0.02  0.22  0.08  0.02
g|  0.15  0.88  0.02  0.02  0.02  0.02  0.95  0.02  0.02  0.02  0.22
t|  0.22  0.08  0.02  0.48  0.02  0.02  0.02  0.02  0.75  0.02  0.02

T   G   A   C   A   C   G   A   C   C   G

p(S|M) = 0.22 * 0.88 * 0.95 * 0.48 * 0.95 * 0.02 * 0.95 * 0.95 * 0.22 * 0.08 * 0.22
    = 4.5e-6
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Predicting binding sites in sequences
74
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Predicting TFBS on real sequences

• Predicting HNF4a on a 1 Mb portion of Mouse chromosome 1 


• 259 predicted TFBS using the TFBS motif 

• 72 real binding events HNF4a ChIP-seq peaks (red) 
 
→ Many false positives / false negatives

75
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Improving TFBS predictions
76

TFBS prediction suffers from a high degree of false-positive 

and false-negative predictions


[Wasserman & Sandelin, Nat.Rev.Gen (2004)]
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4. improving predictions
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Problem of sequence-only predictions

• Large number of  false-positive/
false-negative 
the sequence looks like a binding 
site, but the TF is not binding! 

• Cellular/tissue-context not 
taken into account 
a TF might bind in one tissue, but 
not in another (but the sequence 
is the same...)

78

predictions
real binding

A C T T G C A C A A T

Why is CEBPB 
binding in 
some 
cell-lines and 
not in others ?

Can we reduce/optimize the search 
space for regulatory elements?
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Phylogenetic footprinting

• Tagle et al. (1988) : study of the 
promoter of globin genes in 
vertebrates identifies conserved 
regulatory elements

[Tagle et al., J.M.B. (1988)] [Duret & Bucher, Curr.Op.Str.Biol. (1997)]
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Phylogenetic footprinting

• Starting point :  alignment of 2 
orthologous regions  
(e.g. promoter of orthologous genes)


• Compute the conservation inside a 
sliding window (number of conserved 
positions divided by length)


• TFBS search using PWM (fixed 
threshold)


• Only TFBS inside highly conserved 
regions are retained !


• Choice of organisms to be compared is 
crucial !

ACGGATCGGATTAGCA
|| ||| | | |||||
ACCGATTGCAATAGCA

conservation = 12 / 16 

= 75%

TTGCAGAATGCATACC
 | |     | | | |
ATTCGATTCGAAGATC

conservation = 6 / 16 

= 37.5%

search space

human

mouse
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Deeply conserved non-coding elements
81

[Snetkova, Nature Rev.Gen. (2020)]

~450 million

years

Ultra-conserved 
elements 
perfect conservation 
over 200 bp

between human and 
mouse/rat
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Important chromatin components

• Methylation of histone 3 Lysine 4 (H3K4me1) 


• acetylation of histone 3 Lysine  (H3K9ac, H3K27ac,...)


• Presence of Pol II binding at active enhancers 


• Presence of modified form of H3 → H3.3 

• DNA accessibility (DNAse hypersensitive sites; ATAC-seq)

82

Some chromatin features are associated with open/accessible regions
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Motifs are not always binding events

• Compare in-silico TFBS to in-vivo binding event using ChIP data


• some bona fide motifs are not bound in-vivo : why ?


• example in Drosophila : heat-shock factor (HSF)

๏ 464 ChIP peaks containing a HSF-motif (p < 0.001)

๏ 708 unbound motifs (with p < 5e-6) 

Bound sites have: 
• high levels of lysine 

acetylation 
• high levels of polII binding 
• low levels of H3K27me3 

(repressive mark related to 
polycomb repression)

[Guertin et al., PLoS Gen. (2010)]
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Histone code
84

Mark Interpretation

H3K4me1 activating mark; found at promoters and enhancers

H3K4me3 mark of active and open gene promoters

H3K27ac mark of active promoters and enhancers

H3K36me3 mark of actively transcribed genes

H3K9me3 mark of closed heterochromatin

H3K27me3 polycomb associated mark → repressed chromatin
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Histone code

active marks

mostly H3K4me3

mostly 

H3K36me3

strong activating marks

mostly H3K27ac

repressive marks

H3K27me3

Histone modifications appear to occur in specific combinations

related to functional impact → combinatorial chromatin states 

How can we define/annotate these chromatin states ?

→ Hidden Markov model

85
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Chromatin states

Active Transcription

Start Site 

= H3K4me3 + H3K27ac

Active Enhancer 

= H3K4me1 + H3K27ac

Transcribed region

=H3K36me3

86
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Chromatin states

Repressed Polycomb

= H3K27me3

87
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Roadmap chromatin segmentation in different 
human adult tissues

http://epigenomegateway.wustl.edu

Some states correspond to regulatory

regions (active and poised enhancers)

→ motif search can be restricted to  
these regions

88
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EpiLogos
89

https://epilogos.altius.org[W. Meuleman]
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Conclusions

• Transcription regulation is a complex process with an interplay of 
multiple components


• Transcription factors play a central role, usually in combination 
with other TF inside enhancers


• Tissue / context specificity of the activity of regulatory elements is 
given by the cell-specific chromatin state: open/accessible or 
closed/compact


• Many data types available to build integrative models of 
regulatory activity


• Single-cell genomics is becoming the new challenge in regulatory 
genomics
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