Einführung in maschinellem Lernen (Teil 1)

Carl Herrmann

Health Data Science Unit Medizinische Fakultät & BioQuant www.hdsu.org

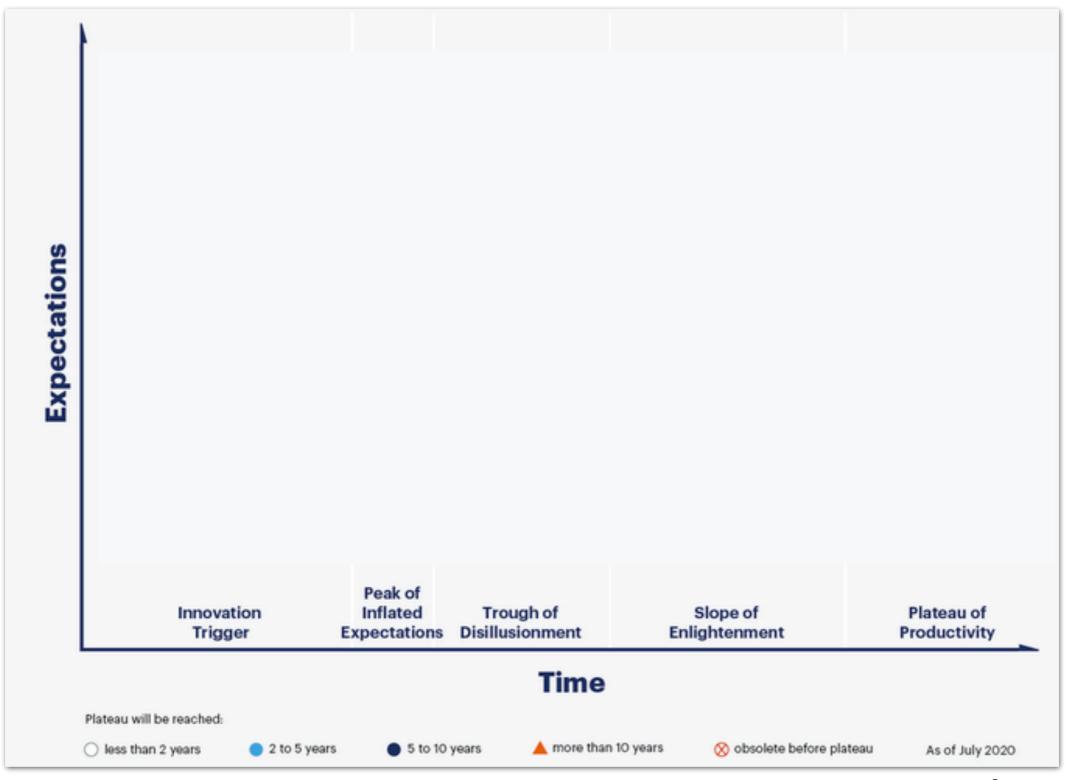
carl.herrmann@bioquant.uni-heiderlberg.de

Inhalt

- 1. Was ist maschinelles Lernen?
- 2. Datentypen
- 3. Grundkonzepte in ML
- 4. Modelle lernen
- 5. Anwendung: Regressionsmodelle (lineare Regression)
- 6. Anwendung : Klassifizierungsmodelle (k-NN, Entscheidungsbäume)
- 7. Zusammenfassung

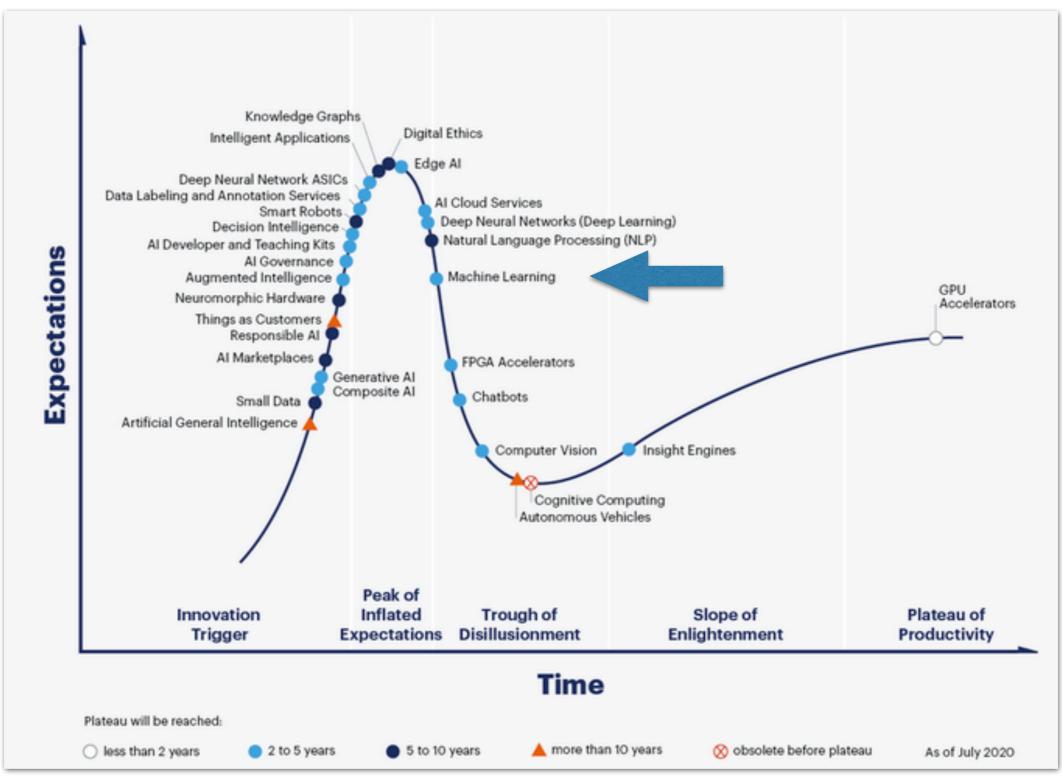
1. Was ist maschinelles Lernen (ML)?

Trends in künstlicher Intelligenz



[www.gartner.com]

Trends in künstlicher Intelligenz



[www.gartner.com]

Künstliche Intelligenz? maschinelles Lernen?

Künstliche Intelligenz

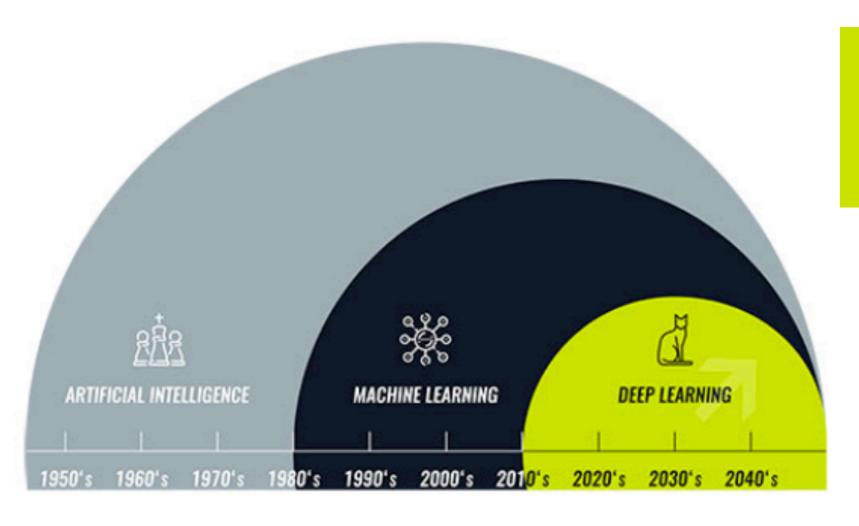
Konzept: Maschinen bauen, die in der Lage sind, humane Aufgaben zu erfüllen

Beispiel: Schachkomputer,

Expertensystem

Maschinelles Lernen

konkrete Verfahren, um die Ziele der KI zu implementieren "adaptive Algorithmen", die aus Daten lernen

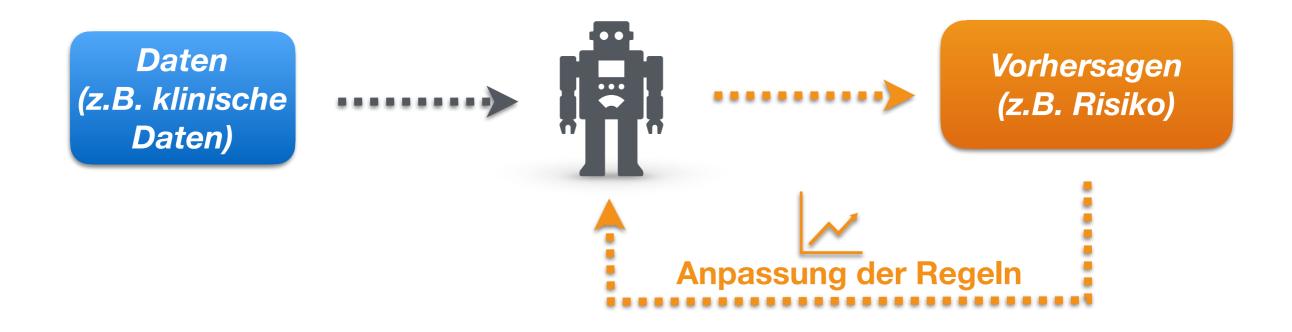


Deep Learning

eine Form von ML, die auf neuronalen Netzwerken basiert

https://www.twt.de

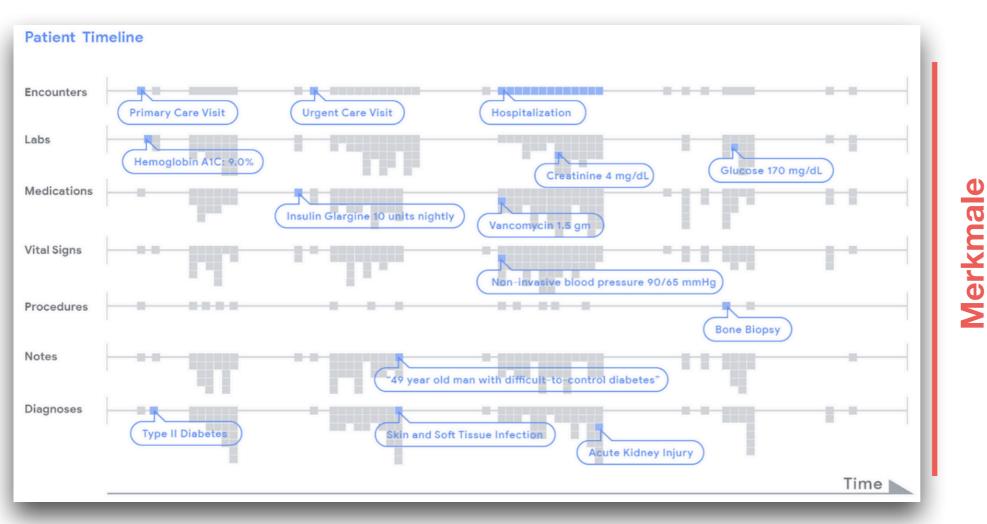
Maschinelles Lernen

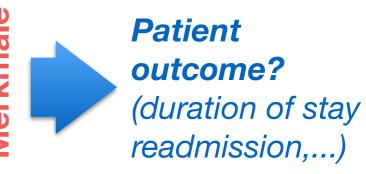


- ML = iteratives Verfahren
- Kostenfunktion wird dabei minimiert (oder Qualitätsfunktion maximiert)
- Dazu werden die Vorhersageregeln angepasst

Beispiel

Vorhersage von Patient-outcome aus elektronischer Patientenakte





https://ai.googleblog.com/2018/05/deep-learning-for-electronic-health.html

2. Datentypen

Beispiel: klinische Daten, Diabetes Patienten

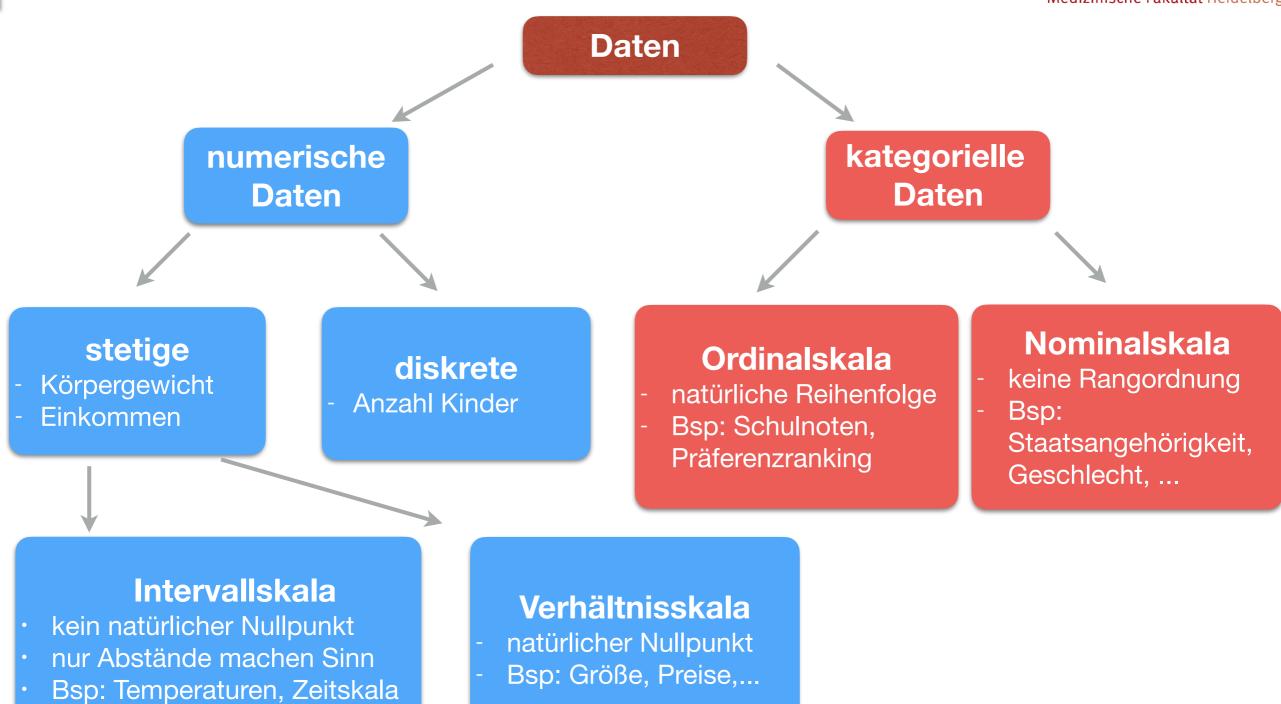
Merkmale ("features") (klinische Daten)

id	chol	stab.glu	hdl	ratio	glyhb	location	age	gender	height	weight	frame	bp.1s	bp.1d	bp.2s	bp.2d	waist	hip	time.ppn
1000	203	82	56	3.60	4.31	Buckingham	46	female	62	121	medium	118	59	NA	NA	29	38	720
1001	165	97	24	6.90	4.44	Buckingham	29	female	64	218	large	112	68	NA	NA	46	48	360
1002	228	92	37	6.20	4.64	Buckingham	58	female	61	256	large	190	92	185	92	49	57	180
1003	78	93	12	6.50	4.63	Buckingham	67	male	67	119	large	110	50	NA	NA	33	38	480
1005	249	90	28	8.90	7.72	Buckingham	64	male	68	183	medium	138	80	NA	NA	44	41	300
1008	248	94	69	3.60	4.81	Buckingham	34	male	71	190	large	132	86	NA	NA	36	42	195
1011	195	92	41	4.80	4.84	Buckingham	30	male	69	191	medium	161	112	161	112	46	49	720
1015	227	75	44	5.20	3.94	Buckingham	37	male	59	170	medium	NA	NA	NA	NA	34	39	1020
1016	177	87	49	3.60	4.84	Buckingham	45	male	69	166	large	160	80	128	86	34	40	300
1022	263	89	40	6.60	5.78	Buckingham	55	female	63	202	small	108	72	NA	NA	45	50	240
1024	242	82	54	4.50	4.77	Louisa	60	female	65	156	medium	130	90	130	90	39	45	300
1029	215	128	34	6.30	4.97	Louisa	38	female	58	195	medium	102	68	NA	NA	42	50	90
1030	238	75	36	6.60	4.47	Louisa	27	female	60	170	medium	130	80	NA	NA	35	41	720
1031	183	79	46	4.00	4.59	Louisa	40	female	59	165	medium	NA	NA	NA	NA	37	43	60
1035	191	76	30	6.40	4.67	Louisa	36	male	69	183	medium	100	66	NA	NA	36	40	225
1036	213	83	47	4.50	3.41	Louisa	33	female	65	157	medium	130	90	120	96	37	41	240
1037	255	78	38	6.70	4.33	Louisa	50	female	65	183	medium	130	100	NA	NA	37	43	180

Unterschiedliche Datentypen

Variable	Explanation	Unit	Туре
chol	total cholesterol		stetig
stab.glu	Stabilized Glucose		stetig
hdl	High Density Lipoprotein		stetig
ratio	Cholesterol/HDL Ratio		stetig
glyhb	Glycosolated Hemoglobin		stetig
location			kategoriell
age			numerisch, diskret
gender			kategoriell
height		inches	stetig
weight		pounds	stetig
frame			kategoriell
bp.1s	systolic blood pressure		stetig
bp.1d	diastolic blood pressure		stetig
bp.2s	systolic blood pressure		stetig
bp.2d	diastolic blood pressure		stetig
waist		inches	stetig
hip		inches	stetig
time.ppn	Time since last meal	minutes	stetig

Datentypen



Datenumwandlung

- Einige Algorithmen k\u00f6nnen nur mit numerischen (diskreten/stetigen)
 Variablen arbeiten; kategorische Variablen m\u00fcssen daher umgewandelt werden
- Ordinale Daten: haben wie Zahlen eine natürliche Rangordnung
 - "erster", 'zweiter',''dritter' → 1, 2, 3
 - 'sehr gut', 'gut', 'befriedigend', ... → 1, 2, 3, ...
- Nominale Daten: Nominale Daten haben keine natürliche Rangordnung
 - 'ja', 'nein' → 1, 0 oder 0, 1
 - 'rot', 'grün', 'blau' → 1, 2, 3 aber warum nicht 2, 3, 1?
 - Problem: rot=1, grün=2, blau=3: sind rot und grün näher als rot und blau?
- Lösung: "one-hot encoding"

one-hot encoding

	Ethnicity
Patient 1	Caucasian
Patient 2	AfricanAmerican
Patient 3	Hispanic
Patient 4	Caucasian

	Caucasian	AfricanAmerican	Hispanic
Patient 1	1	0	0
Patient 2	0	1	0
Patient 3	0	0	1
Patient 4	1	0	0

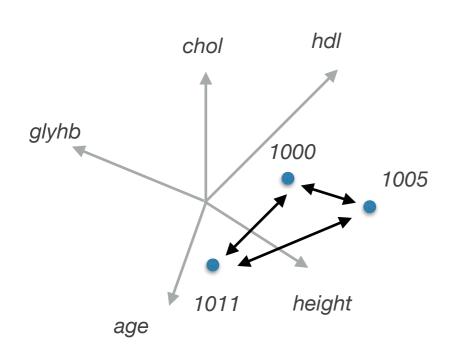
- Nominale Variablen werden durch binäre Variablen ersetzt ("dummy variable")
- Anzahl der binären Variablen = Anzahl der Ausprägungen (hier 3: Caucasian/AA/Hispanic)

Beispiel: klinische Daten, Diabetes Patienten

Merkmale (klinische Daten)

Beobachtungen (Patienten)

id	chol	stab.glu	hdl	ratio	glyhb	age	height	weight	bp.1s	bp.1d	waist	hip	time.ppn
1000	203	82	56	3.60	4.31	46	62	121	118	59	29	38	720
1001	165	97	24	6.90	4.44	29	64	218	112	68	46	48	360
1002	228	92	37	6.20	4.64	58	61	256	190	92	49	57	180
1003	78	93	12	6.50	4.63	67	67	119	110	50	33	38	480
1005	249	90	28	8.90	7.72	64	68	183	138	80	44	41	300
1008	248	94	69	3.60	4.81	34	71	190	132	86	36	42	195
1011	195	92	41	4.80	4.84	30	69	191	161	112	46	49	720



jede **Beobachtung** (= Patient)

kann als ein Punkt in einem mehr-dimensionalen Raum dargestellt werden Koordinaten = **Merkmale**

Wie können Abstände/Ähnlichkeiten gemessen werden?

- Distanzen (je kleiner desto näher)
- Ähnlichkeitsmaße (je größer desto ähnlicher)

Distanzen

- Mögliche Distanzen:
 - Euklidische Distanz

$$d_{Euclidean}(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

$$d^2 = (9-2)^2 + (7-4)^2 = 58$$

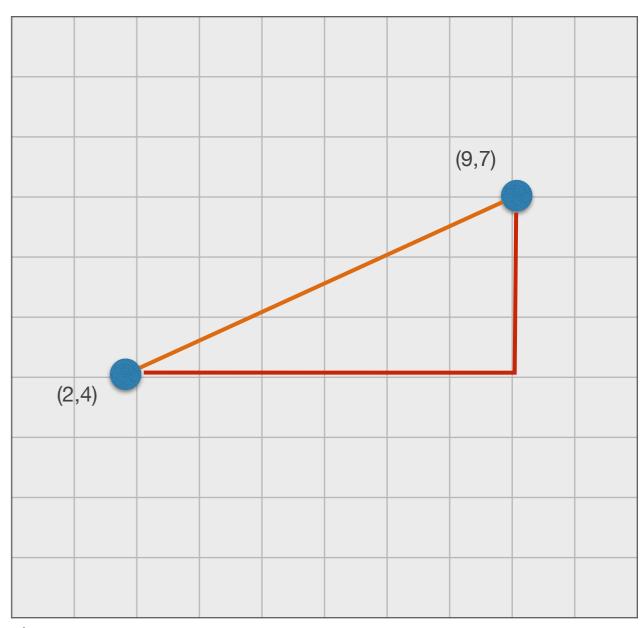
Manhattan-Distanz

$$d_{Manhattan}(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$

$$d = 7 + 3 = 10$$

- Korrelationsdistanz
- •

Diese Distanzen lassen sich auf mehrdimensionale Räume verallgemeinern!



(0,0)

Datenskalierung

- Stetige Daten sind in bestimmten Einheiten dargestellt (Meter, Kg, Anzahl pro Minute,...)
- Daher sind die Intervalle, in denen sich die Daten bewegen, meistens unterschiedlich

Größe (m): [1.50 - 2.00]

Größe (cm): [150 - 200]

Herzschläge/Minute : [30 - 60]

- Distanzen sind meistens empfindlich gegenüber solchen Unterschieden
- Beispiel: Größe h, Gewicht w

$$d_{Euclidean}(x, y) = \sqrt{(h_x - h_y)^2 + (w_x - w_y)^2}$$

	Größe (m)	Gewicht (kg)
A	1.62	75
В	1.65	87
С	1.92	91

euklidische Distanz

	А	В	С
А	0	12	16
В		0	4
С			0

B/C am nächsten

	Größe (cm)	Gewicht (kg)
A	162	75
В	165	87
С	192	91

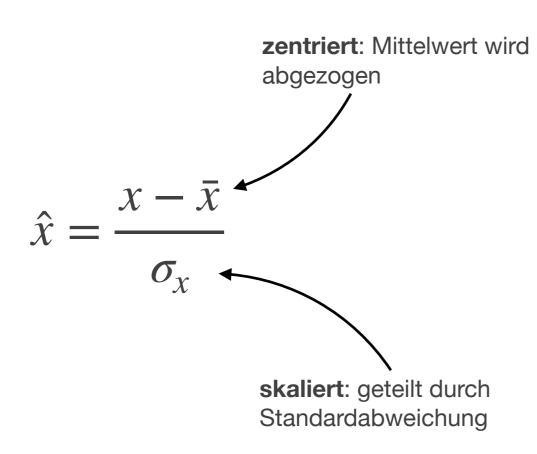
euklidische Distanz

	Α	В	С
Α	0	12.4	34
В		0	27.3
С			0

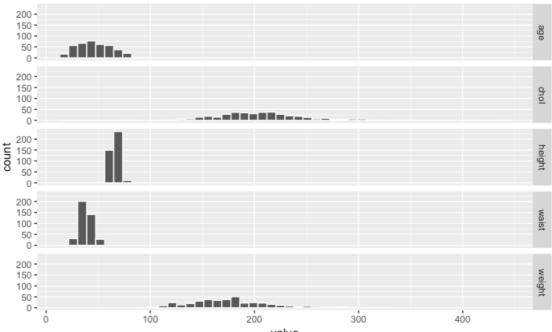
A/B am nächsten

Datenskalierung

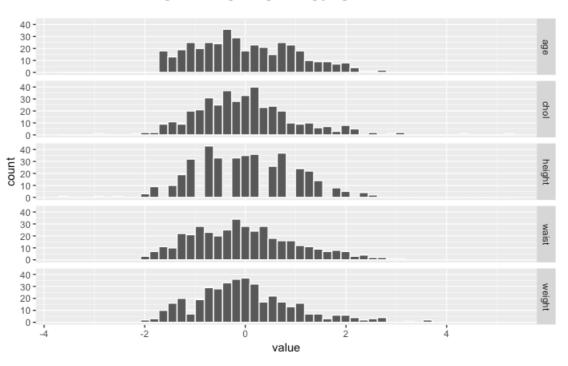
 Lösung: Daten können durch eine Z-Transformation zentriert und skaliert werden:



Normierte Daten haben Mittelwert
 0 und Standardabweichung 1



normierte Daten



Fragen?

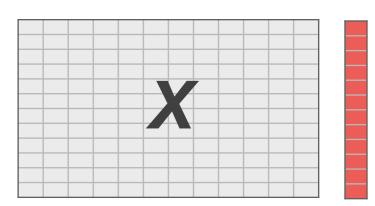
3. Grundkonzepte in ML

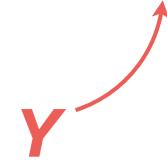
Aufgabe bei ML

- X: Beobachtete Merkmale (stetig, diskret, kategorielle Merkmale)
 - klinische Parameter (Temperatur, Blutwerte, Bilddaten, ...)
 - Allgemeine Merkmale (Geschlecht, Alter,...)
 - Vorgeschichte (vorherige Behandlungen,...)
- Y: Klassen oder Zielwerte, die teilweise bekannt, oder nicht bekannt sind
 - Rückfallwahrscheinlichkeit (nur retrospektiv bekannt)
 - Versicherungsrisiko (nur retrospektiv bekannt)
 - Tumor-subtyp (Expertenmeinung = aufwendig)
 - Diagnose zu diabetischer Retinopathie (Expertenmeinung = nicht-vorhanden)

Merkmale (e.g. klinische Daten,...)

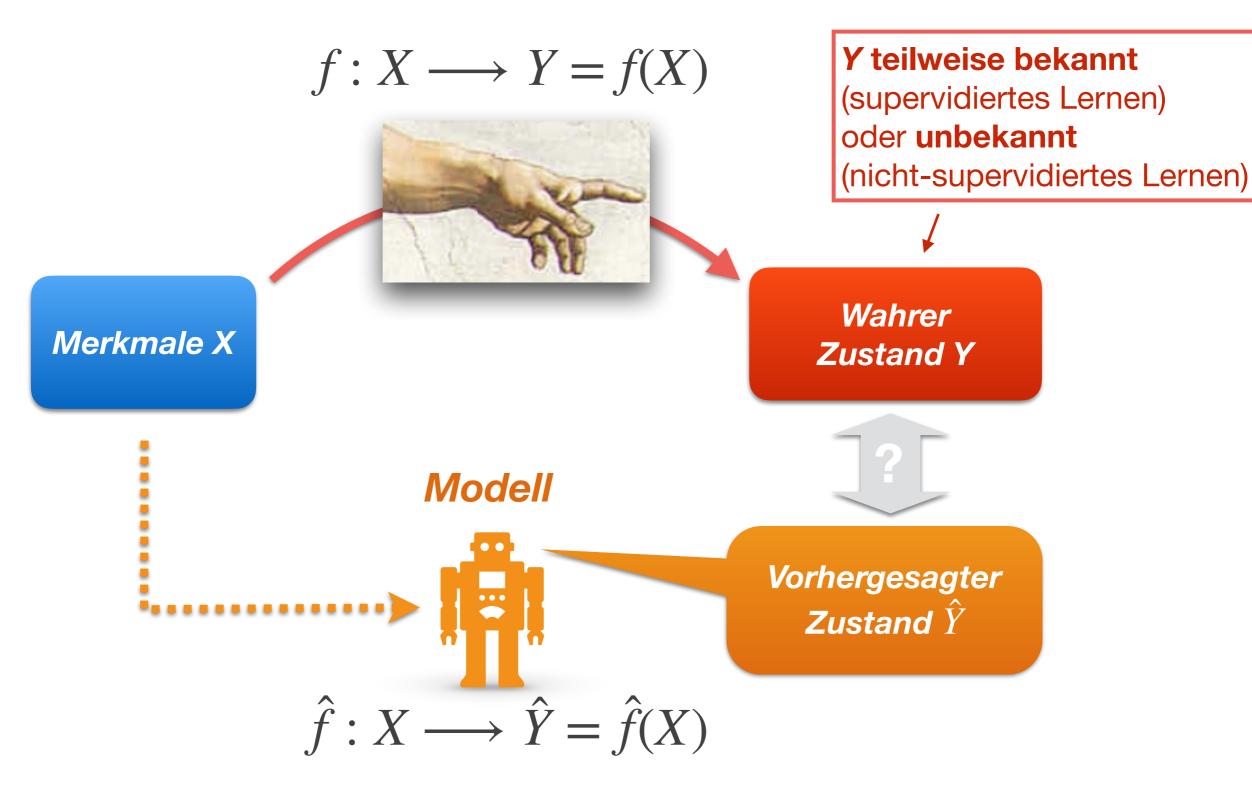
Beobachtungen (e.g. Patienten)





- Überlebenszeit (stetig)
- Stärke der Nebenwirkungen (ordinal)
- Risikopatient? (binär)
- Subtyp (nominal)

Aufgabe bei ML



"Black-box" / "White-box"

Vorhergesagter Zustand \hat{Y}

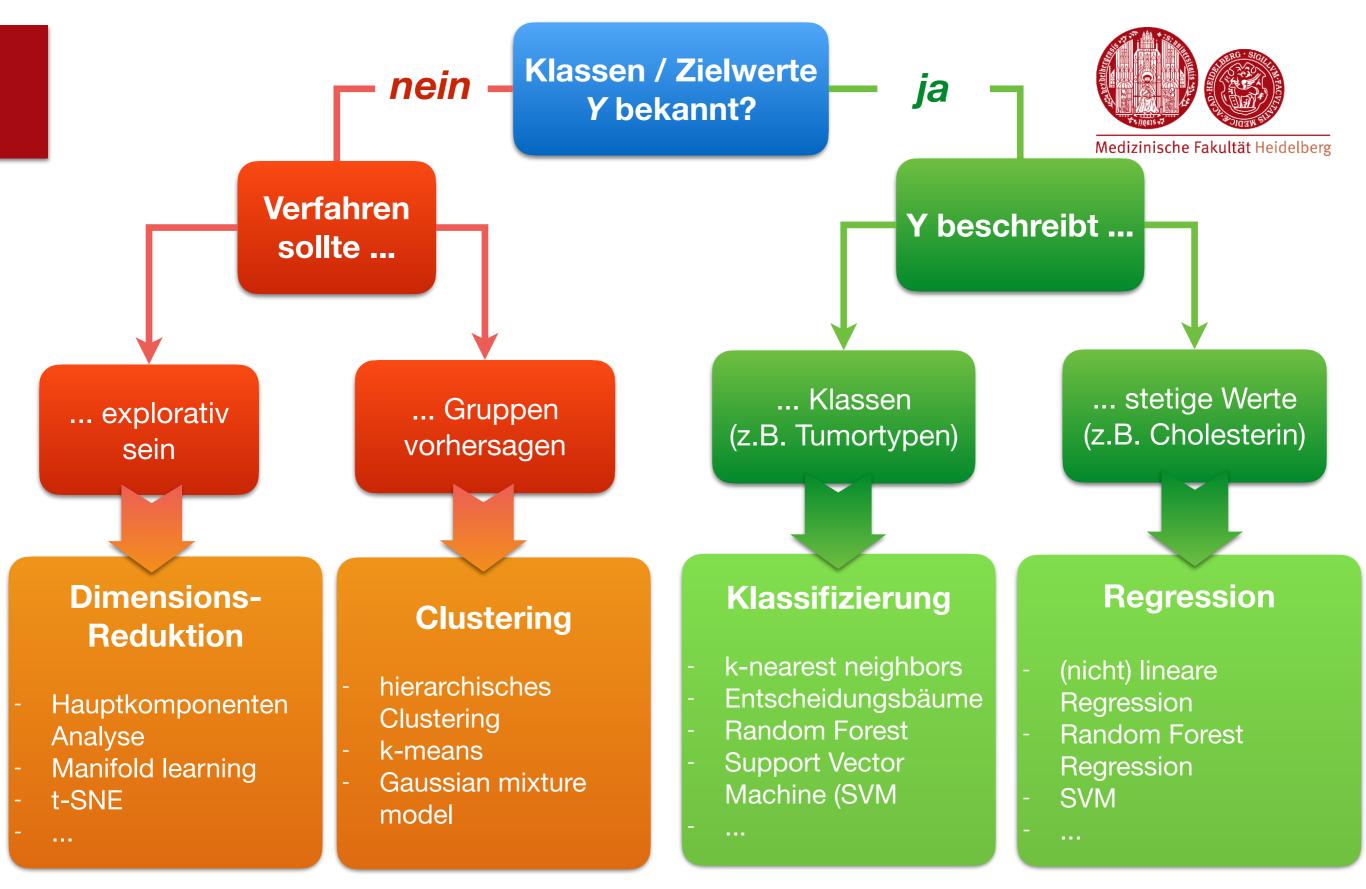
Vorhergesagter Zustand \hat{Y}

Wichtigkeit der Merkmale für die Vorhersage?

- Bei Black-box Verfahren sind die Merkmale meistens nicht interpretierbar (e.g. SVM, deep neural networks,...)
- Bei "White-box" Verfahren wird die Wichtigkeit der Merkmale ("feature importance") vorhergesagt (lineare Regression, Entscheidungsbäume,...)
- Dadurch können unwichtige Merkmale eliminiert werden ("feature selection")

Merkmale X

Merkmale X

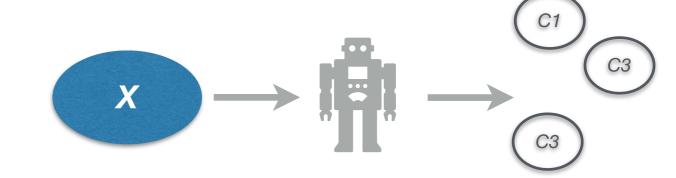


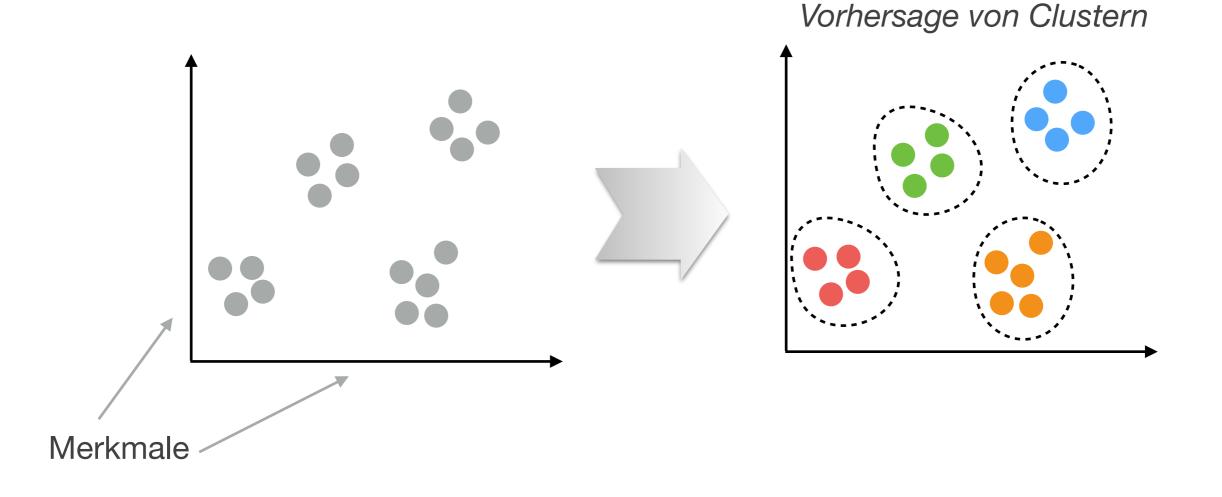
Nicht-supervidierte Verfahren

Supervidierte Verfahren

Nicht-supervidiertes Lernen

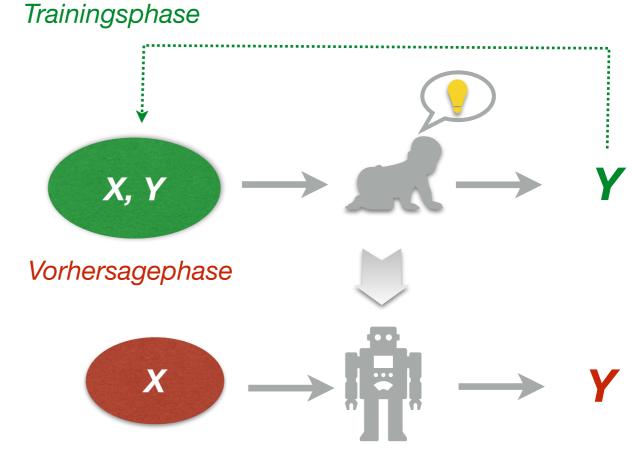
- Klasse/Zielwert Y nicht-bekannt:
 nicht-supervidiertes Lernen
 - Clustering
 - Bildsegmentierung



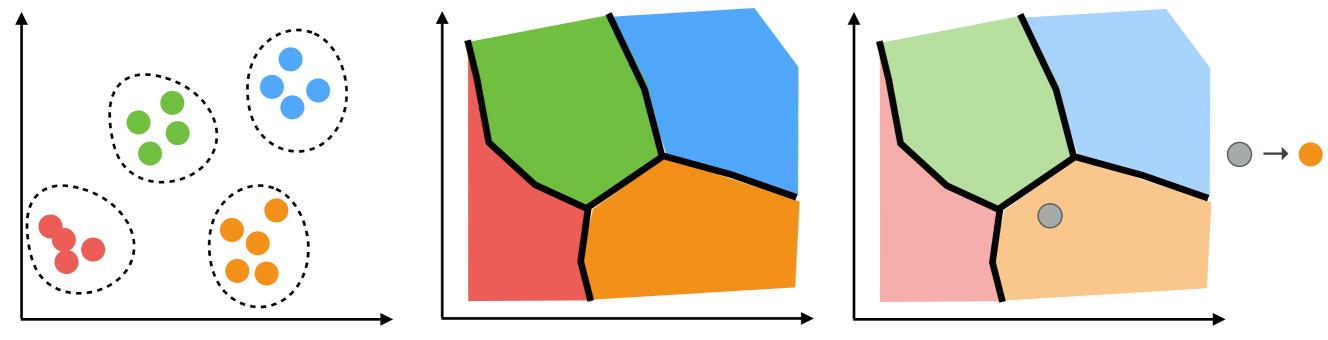


Supervidiertes Lernen

- Klasse/Zielwert Y für eine Untermenge bekannt: supervidiertes Lernen
 - Trainingsphase anhand des Trainingsdatensatzes
 - Evaluation auf dem Testdatensatz
 - Vorhersage auf neuem Datensatz
 - Klassifizierung / Regression



Beispiel: k-nearest neighbors



Aufgabe bei ML

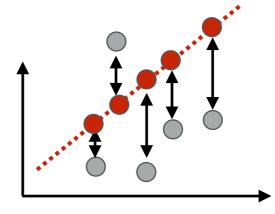
• Wir suchen eine **Abbildung** \hat{f} :

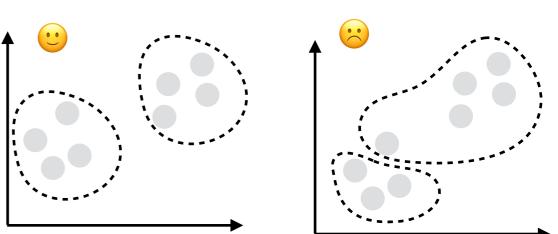
$$\hat{f}: X \longrightarrow \hat{Y} = \hat{f}(X)$$

- Sie sollte eine gewisse Kostenfunktion minimieren
 - ullet supervidiert: Vorhersagen \hat{Y} sollten so nah wie moglich an den wahren Werten sein

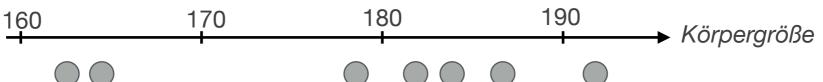
nicht-supervidiert: vorhergesagte
 Klassen \hat{Y} sollten konsistent sein

- nominal bei nichtsupervidiertem
 Verfahren
- nominal/ordinal bei supervidierter
 Klassifizierung
- stetig bei supervidierter Regression





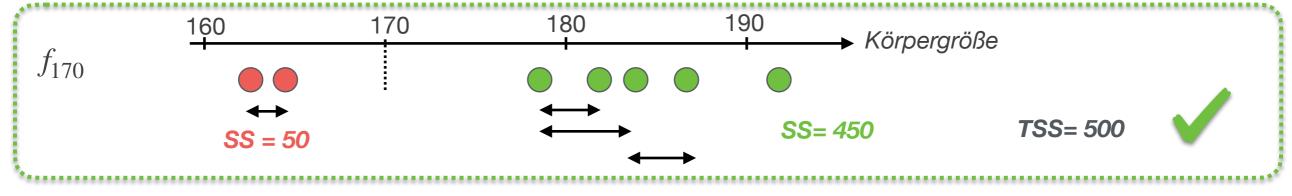
Beispiel: nicht-supervidiert

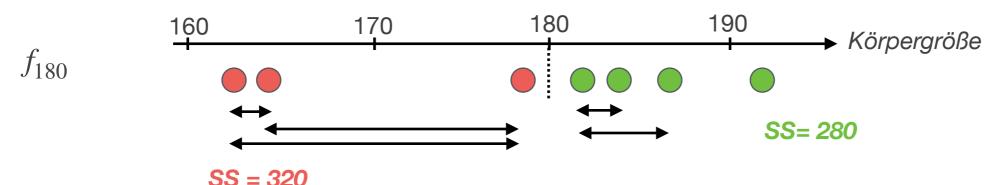


- **Ziel**: definiere 2 Gruppen
- Mögliche **Abbildung**: Stufenfunktion f_k

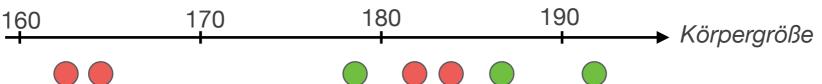
- Mögliche Kostenfunktion: Summe der quadrate der paarweisen

Abstände

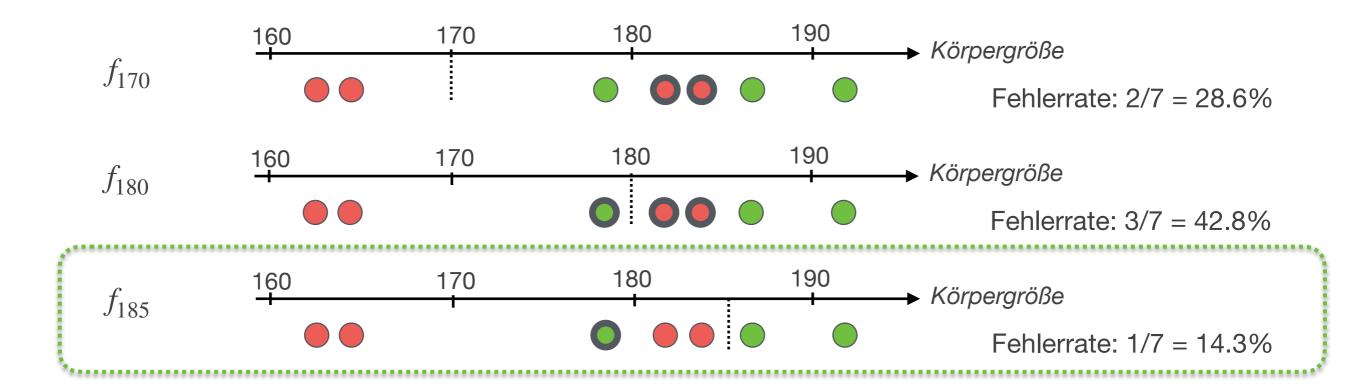




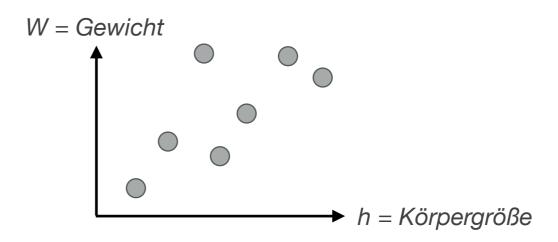
Beispiel: supervidiert



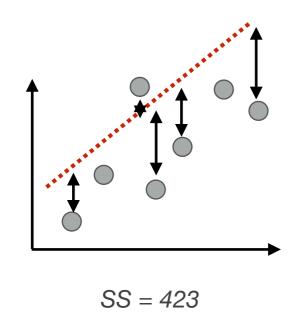
- Ziel: Lerne Regel für Entscheidung
- Mögliche **Abbildung**: Stufenfunktion f_k h < k: \longrightarrow •
- Mögliche Kostenfunktion: Anteil der falsch Klassifizierten Punkte

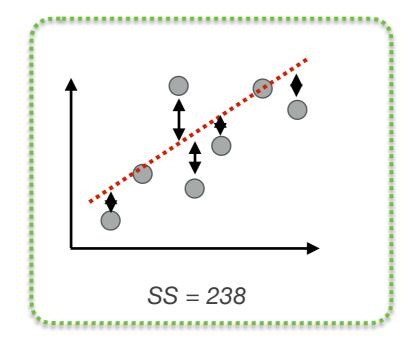


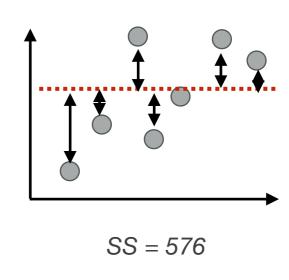
Beispiel: supervidiert



- Ziel: Lerne Regel Größe → Gewicht
- Mögliche **Abbildung**: lineare Funktion $W = f(h) = \theta_0 + \theta_1 \cdot h$
- Mögliche Kostenfunktion: Summe der quadratischen Abstände







Kostenfunktion

- bei supervidierten Verfahren werden die tatsächlichen Werte Y mit den vorhergesagten Werten Y verglichen → Kostenfunktion
- bei **Regressionsverfahren** sind Y und \hat{Y} stetige Werte
- Mögliche Kostenfunktionen:
 - (root) mean square error (RMSE) $RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i y_i)^2}$
 - mean absolute error (MAE) $MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i y_i|$
- RMSE ist anfälliger für Ausreißer (durch die Potenz 2)!

Kostenfunktion

- bei supervidierten Verfahren werden die tatsächlichen Werte Y mit den vorhergesagten Werten Y verglichen → Kostenfunktion
- bei **Klassifizierungsverfahren** sind Y und \hat{Y} nominale/ordinale Werte
- Vergleich durch Konfusionsmatrix

		Vorhersage							
		Α	В	С					
Werte	Α	N _{AA}	N _{AB}	n _{AC}					
wahre M	В	n _{BA}	n _{BB}	N _{BC}					
Wa	С	n _{CA}	n _{CB}	ncc					

Korrektklassifizierungsrate (Accuracy)

$$KKR = \frac{\sum_{i} n_{ii}}{\sum_{i,j} n_{ij}} \in [0,1]$$

Falschklassifizierungsrate (False prediction error)

$$FKR = 1 - Accuracy = \frac{\sum_{i \neq j} n_{ij}}{\sum_{i,j} n_{ij}} \in [0,1]$$

Kostenfunktion

wahre Positive

Medizinische Fakultät Heidelberg

Trefferquote (recall) für Klasse A:

$$Rec = \frac{WP}{WP + FN} = \frac{n_{AA}}{n_{AA} + n_{AB} + n_{AC}}$$

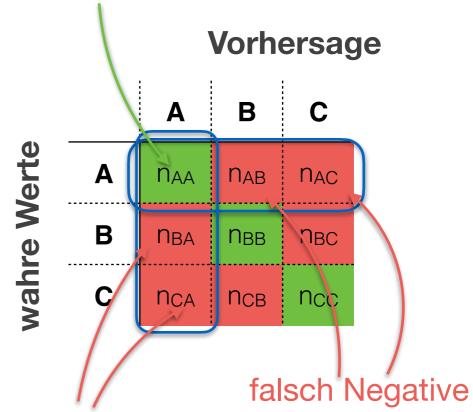
Genauigkeit (precision) für Klasse A:

$$Prec = \frac{WP}{WP + FP} = \frac{n_{AA}}{n_{AA} + n_{BA} + n_{CA}}$$

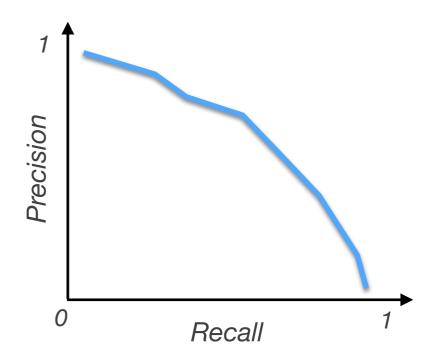
F1-score: kombiniert Prec und Rec

$$F1 = 2 \frac{Prec \cdot Rec}{Prec + Rec}$$

• Prec und Rec hängen von den Parametern θ des Verfahrens ab; Verhalten kann in einem Precision/Recall Diagramm dargestellt werden



falsch Positive

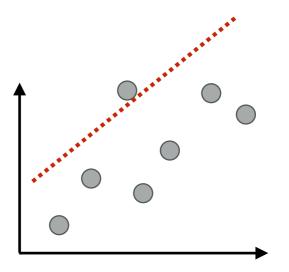


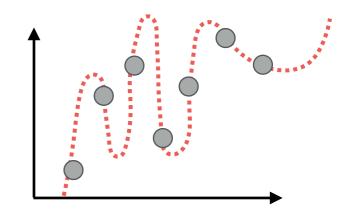
Fragen?

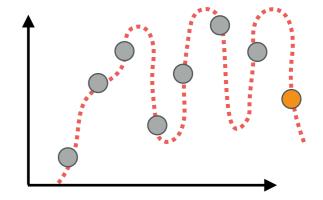
4. Modelle lernen

Wie gut ist das Modell?

- Es soll die vorhandenen Daten gut erklären
 - kein systematischer Fehler
 - geringe Verzerrung der Daten
- Es soll sich auch gut auf andere Daten verallgemeinern lassen
 - Robustheit gegenüber kleinen Änderungen in den Daten
 - geringe Varianz des Modells







Verzerrung: wie weit vom Zielwert Y?

Varianz: wie variabel sind die Vorhersagen?

Rauschen in den Daten

Hohe Varianz

Geringe Verzerrung

Hohe Verzerrung

Geringe Varianz

Hohe Varianz Geringe Varianz

Geringe Verzerrung

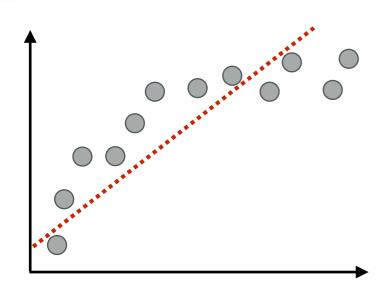
- Optimales Modell: geringe Varianz, geringe Verzerrung
- Geringe Verzerrung mit hoher Varianz: Modell ist auf die wahren Werte zentriert, aber fluktuiert start und ist nicht stabil
 - → lässt sich nicht auf neue Daten verallgemeinern!
- Effekt von overfitting:
 - Modell ist gut auf Trainingsdaten angepasst
 - lässt sich nicht verallgemeinern
- Ein komplexeres Modell (z.B. mit weiteren Merkmalen) führt zu geringerer Verzerrung aber höherer Varianz!

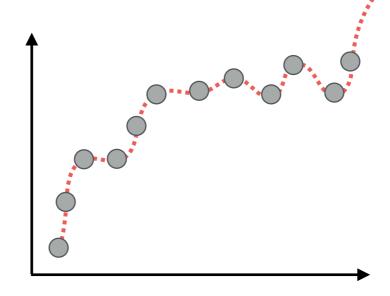
Geringe Varia Maria Heidelberg

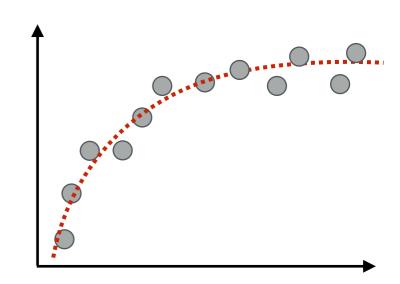
Hohe Varianz

- Optimales Modell: geringe Varianz, geringe Verzerrung
- Geringe Varianz mit hoher Verzerrung: Modell hat einen systematischen Fehler
 - → vermutlich ist das Modell zu einfach, um die Daten zu erklären
- Effekt von underfitting:
 - Modell hat eine zu geringe Komplexität, oder hat falsche Annahmen!

Overfitting / underfitting







Underfitting:

Modell ist zu einfach, um die Daten zu beschreiben

→ systematischer Fehler,

hohe Verzerrung

Overfitting:

Modell ist perfekt an die Trainingsdaten angepasst, lässt sich aber schlecht auf neue Daten verallgemeinern!

→ hohe **Varianz**

Gutes Modell:

Modell ist gut an die Trainingsdaten angepasst, und lässt sich auf neue Daten verallgemeinern!

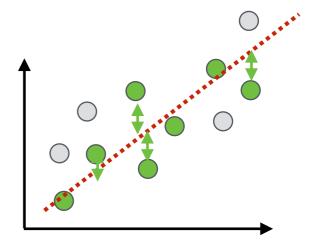
- → geringe **Varianz**
- → geringer **Verzerrung**

Modell trainieren

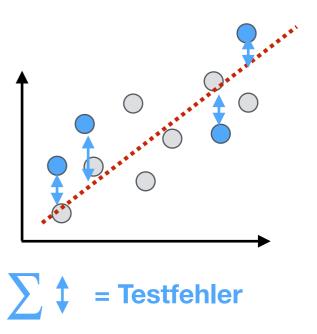
Trainings-Datensatz (~80%) Modell wird auf dem Trainingsdatensatz erstellt...

Klassen bekannt!

Test-Datensatz (~20%) ... und auf dem Test-Datensatz bewertet

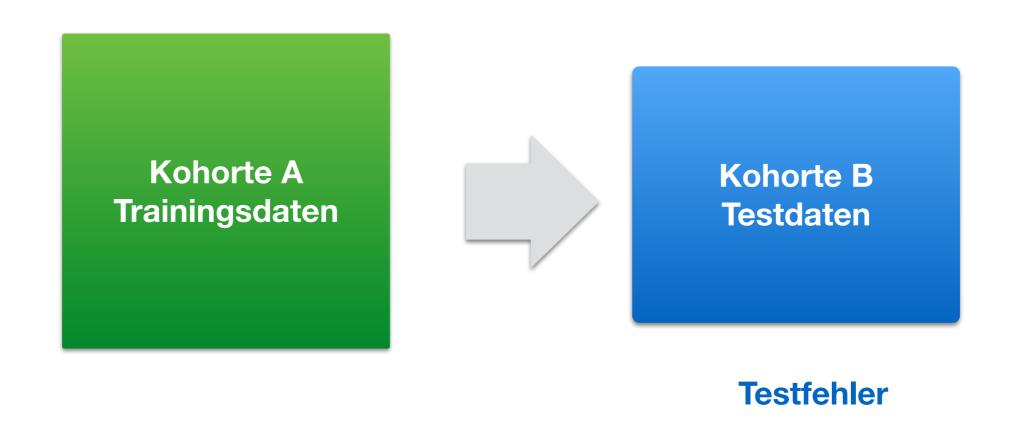


- Trainingsfehler hoch, Testfehler hoch
 - → under-fitting (hoher Verzerrung)
- Trainingsfehler niedrig, Testfehler hoch
 - → over-fitting (hohe Varianz)
- Trainingsfehler niedrig, Testfehler niedrig
 - → gutes Modell



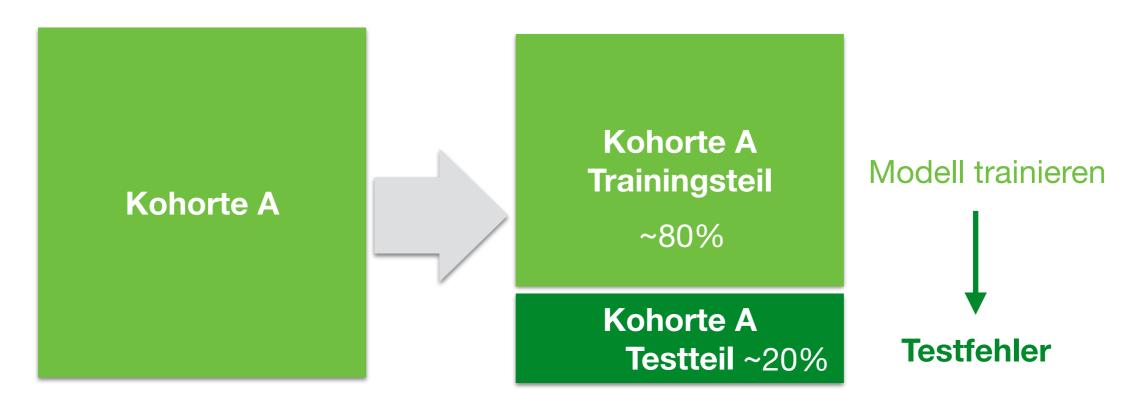
Option 1:

es gibt einen großen Trainingsdatensatz, und einen unabhängigen Testdatensatz



Option 2:

nur eine Kohorte → Aufteilung in Training / Testset



Nachteil

- 20% der Daten werden nicht zum Training benutzt
- Wie soll die Aufteilung erfolgen?

- Option 3: k-Fold cross-Validierung
 - Aufteilung in k gleiche Teile
 - Lernen auf *k*-1, Testfehler auf übriggelassenem Teil
 - Wiederholung *k*-Mal
 - Mittlerer Testfehler
 - + Standardabweichung

- Option 4: Leave-one-our-cross validation (LOOCV)
 - Eine der n Beobachtungen wird ausgelassen
 - Modell wir auf den n-1
 Datenpunkten trainiert
 - Anwendung auf übriggelassenem Punkt
 - n-Mal wiederholt!
 - Mittlerer Testfehler
 - + Standardabweichung

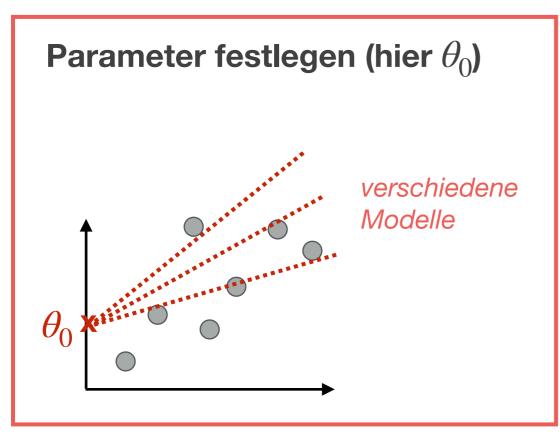
Overfitting vermeiden

- Over-fitting sollte vermieden werden!
- Verschiedene Möglichkeiten
 - Modell vereinfachen (weniger Parameter)
 z.B. Grad des Regressions-Polynoms, Tiefe des
 Entscheidungsbaums, maximale Anzahl von Clustern, Wahl der Merkmale, ...
 - Modell regularisieren
 zusätzliche Bedingungen auf die Parameter des Modells

Regularisierung

Beispiel: lineare Regression

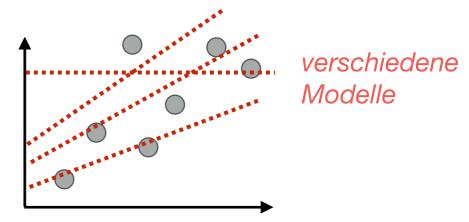
$$\hat{Y} = \theta_0 + \theta_1 \cdot X$$
 2 Parameter: θ_0, θ_1



In diesen Beispielen sind θ_0 oder λ Hyper-parameter, die vor Begin des Trainings festgelegt werden

→ wie werden diese Werte bestimmt?

Zusätzliche Bedingungen auf Parameter



Ziel: bestimme θ_0 , θ_1 die folgende Kostenfunktion minimieren

$$C = \sum_{i=1}^{n} (\theta_0 + \theta_1 \cdot x_i - y_i)^2 + \lambda (\theta_0^2 + \theta_1^2)$$

quadrierte Abweichungen

Regularisierung

[Lasso Regularisierung]

Modell wird auf dem Trainingsdatensatz für bestimmte Hyperparameter erstellt...

... und auf dem Validierungs-Datensatz bewertet Trainings-Datensatz

Validierungs-Ds

... bevor neue Werte der Hyperparameter ausprobiert werden

Test-Datensatz (~20%)

Finales Modell wird auf dem Test-Datensatz bewertet...

neuer Datensatz ... bevor es auf einem neuen Datensatz angewendet wird!

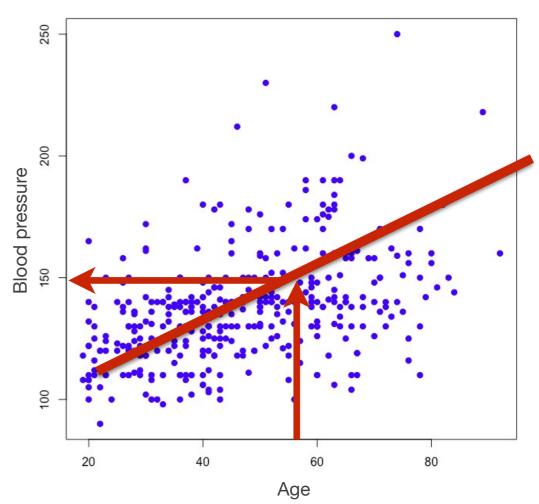
Fragen?

5. supervidiertes Lernen: Regression

Regressions-Verfahren

- Ziel: Vorhersage eines stetigen Merkmals (z.B. Blutdruck) anhand anderer Merkmale
- Mögliche Fragestellungen:
 - Gibt es einen Zusammenhang zwischen Alter und BD? → Korrelation
 - Kann ich BD anhand des Alters vorhersagen? → Regressions-Modell

- Lerne Regressionsmodell aus den Daten
- Teste auf nicht gesehenen Daten
- Vorhersagen auf neuen Daten



$$\hat{Y}_i = \theta_0 + \theta_1 X_i$$

Merkmale

 Stetige Merkmale (Größe, Gewicht,...); Variablen müssen nicht unbedingt skaliert werden!

$$\hat{Y}_i = \theta_0 + \theta_1 X_i = \theta_0 + \theta_1 s \cdot \frac{X_i}{s}$$

- Ordinale Merkmale: small / medium / large; können durch dargestellt werden 1 / 2 / 3, da es eine natürliche Reihenfolge gibt!
- Nominale Merkmale: Frau / Mann; "one-hot encoding": Benutzung von Dummy Variablen (istFrau = 0/1; istMann = 0/1)

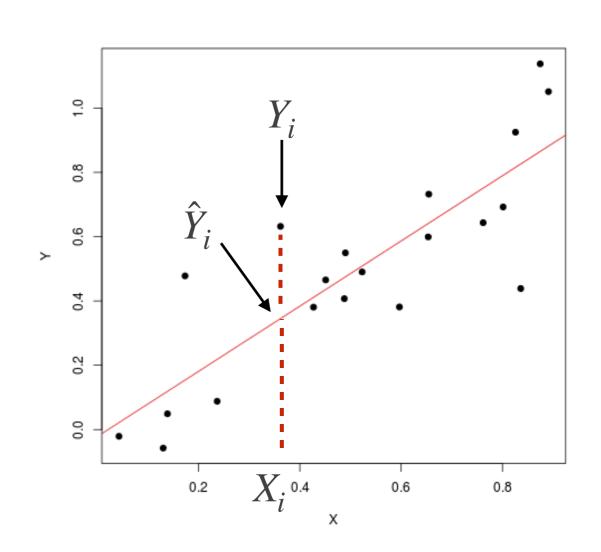
Training

 Wir nehmen an, dass es einen linearen Zusammenhang gibt!

$$X = \{X_1, X_2, ..., X_n\} \quad Y = \{Y_1, Y_2, ..., Y_n\}$$

$$\hat{Y}_i = \theta_0 + \theta_1 X_i$$

- Für jedes X_i kann ein \hat{Y}_i bestimmt werden!
- θ_0 = Schnittpunkt θ_1 = Steigung



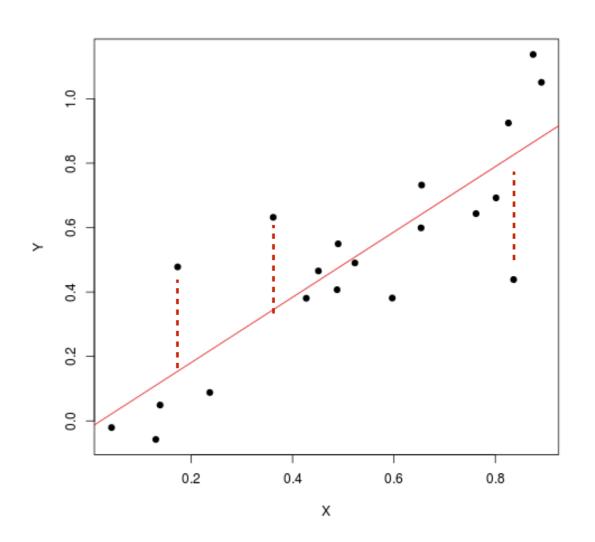
Training

 Parameter werden durch Minimierung der Kostenfunktion bestimmt:

$$\min_{\theta_0, \, \theta_1} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

$$\theta_0 = \bar{Y} - \theta_1 \cdot \bar{X}$$

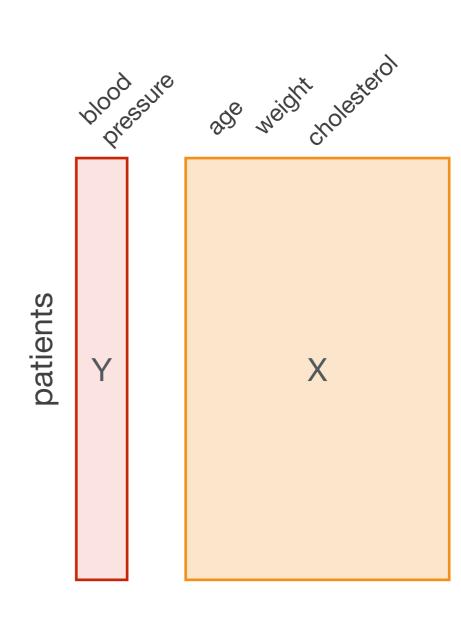
$$\theta_1 = corr(X, Y) \frac{s_Y}{s_X}$$



Multiple Regression

$$\hat{Y}_i = \theta_0 + \theta_1 X_{1i} + \theta_2 X_{2i} + \cdots$$

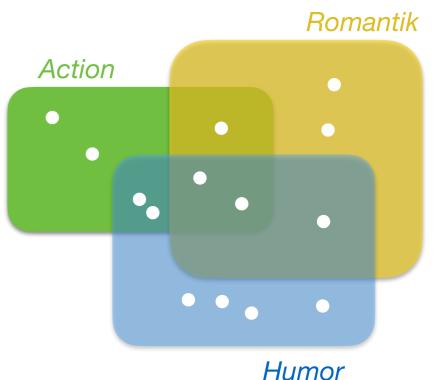
- Y ist das zu vorhersagende merkmal (z.B. Blutdruck)
- *i* = 1,..., n sind die **Beobachtungen** (z.B. Patienten)
- X_k (k = 1,..., r) sind die **Merkmale** (z.B. Alter, Cholesterin, Gewicht, ...)
- Achtung!
 - Multiple Regression: ein vorhersagtes
 Merkmal Y
 - Multivariate Regression: mehrere vorhergesagte Merkmale (Y,Z,...)



6. supervidiertes Lernen: Klassifizierung

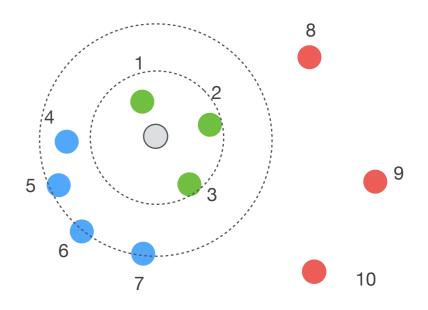
Klassifizierungsalgorithmen

- Binäre Klassifizierung: nur 2 mögliche
 Zustände
 Bestanden / nicht-bestanden; Risikopatient
 ja / nein
- Mehrklassen-Klassifizierung: mehrere exklusive Zustände
 Glioblastom: proneural / mesenchymal / IDH Risiko: gering / mittel / hoch / sehr hoch
- Multilabel-Klassifizierung: jede
 Beobachtung kann mehrere Zustände
 gleichzeitig annehmen
 Klassifizerung von Filmen
 "Fluch der Karibik" → Action, Romantik,
 Humor



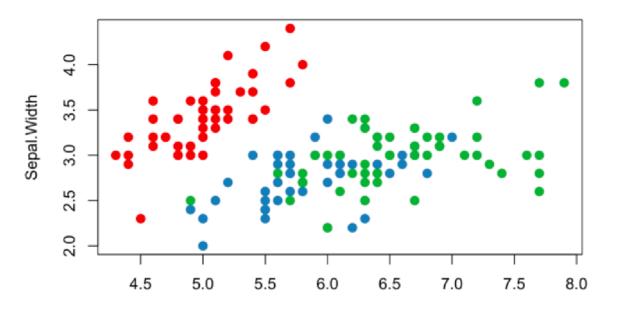
k-nearest neighbors

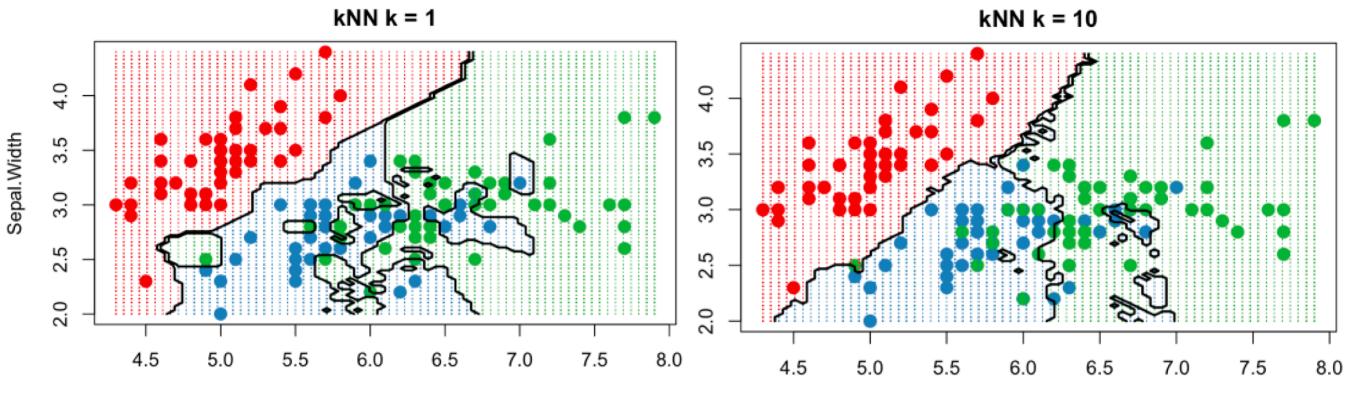
- Mehrklassen-Klassifizierung
- Verfahren
 - 1. Abstände zwischen den Beobachtungen werden anhand einer Metrik bestimmt (euklidische Distanz, Manhattan Distanz,...)
 - 2. Für jede Beobachtung i, bestimme die knächsten Nachbarn
 - 3. Bestimme die Klasse von i anhand einer **Mehrheitsregel**



$$k = 7$$
:

k-nearest neighbors





- Entscheidungsbäume spiegeln das menschliche Verfahren für Klassifizierungsprobleme ab
- Iteratives Verfahren, bei dem die Gesamtmenge der Beobachtungen in immer kleinere Menge entsprechend bestimmten Kriterien aufgeteilt wird

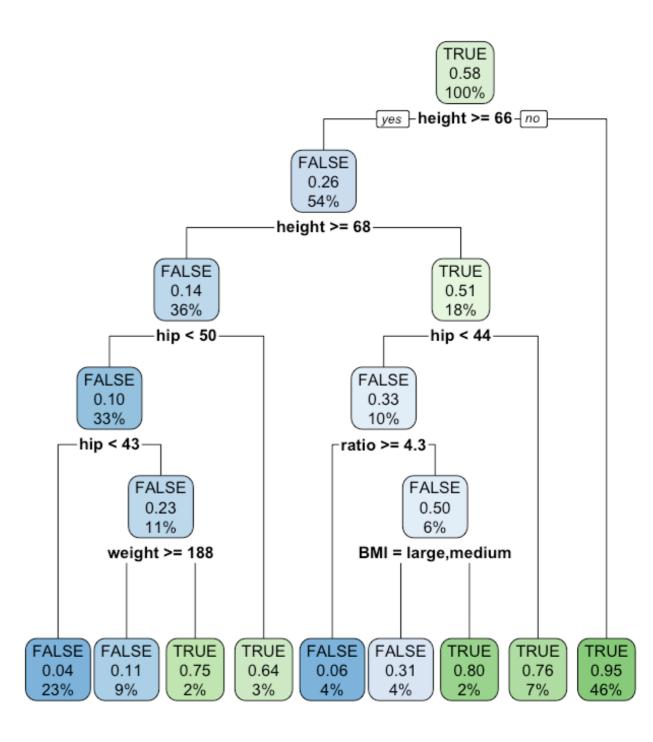
Vorteile:

- sehr einfaches und intuitives Verfahren
- funktioniert für numerische und kategorische Daten
- Daten müssen nicht skaliert werden

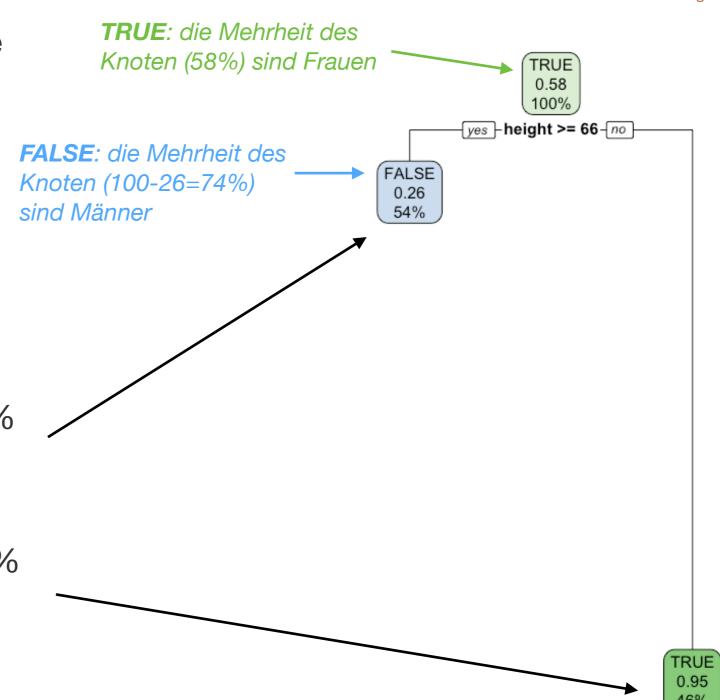
Nachteile

- Modelle sind sehr empfindlich gegenüber Änderungen in den Daten: leicht veränderte Daten führen oft zu ganz unterschiedlichen Modellen!
- Lassen sich daher schwer verallgemeinert ("overfitting"!)

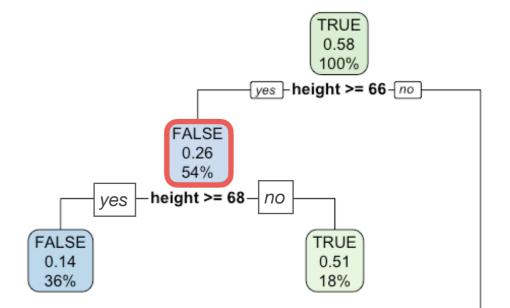
- Bestimmung des Geschlechts anhand klinischer Parameter
 - Größe
 - Hüftumfang
 - Gewicht
 - Cholesterin/HDL ratio
 - BMI (small/medium/large)
 - Blutdruck
 - Alter
 - Stabilized Glucose
 - Herkunftsort
- Prinzip: Gesamtkohorte wird entsprechend der Variablen aufgeteilt



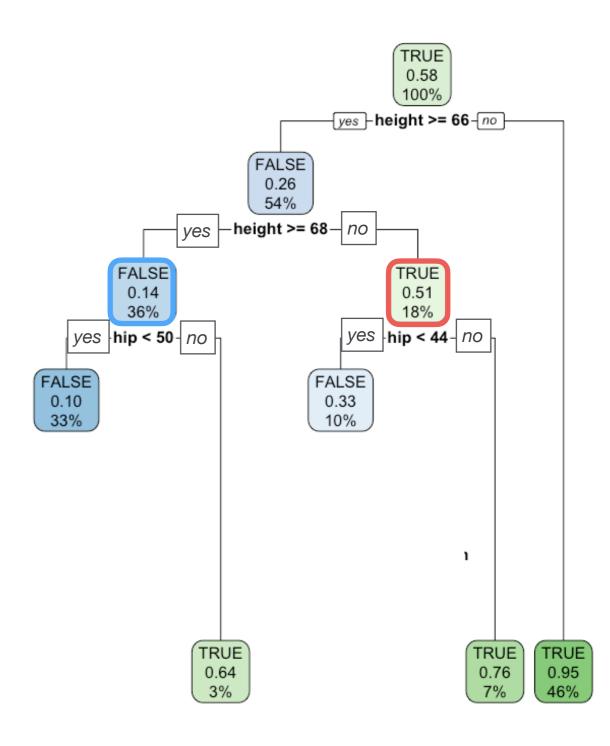
- Schritt 1: Aufteilung der Kohorte ensprechend dem Kriterium "Körpergröße >= 66 inches"
- Ursprüngliche Aufteilung
 - 58% Frauen
 - 42% Männer
- Danach:
 - linker Knoten (">=66"): 54%
 der Patienten, davon 26%
 Frauen
 - rechter Knoten ("<66"): 46%
 der Patienten, davon 95%
 Frauen



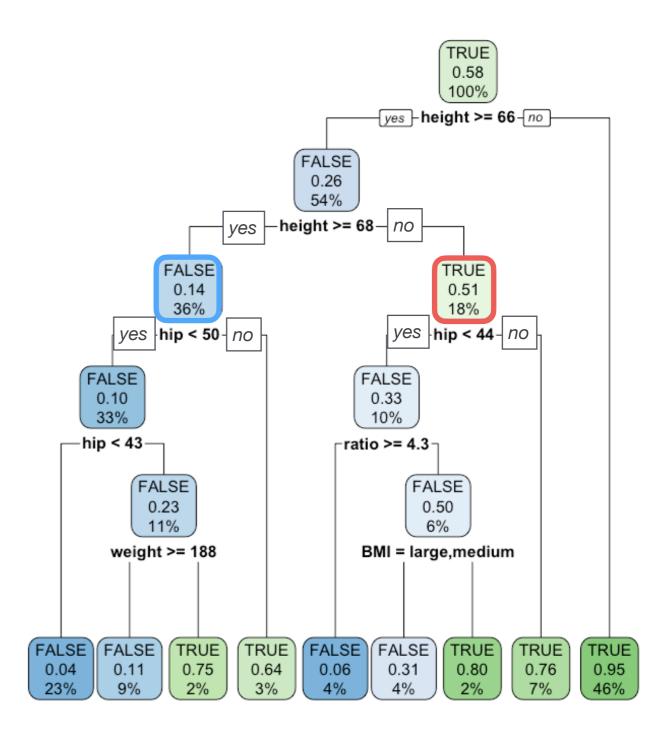
- Schritt 2
- rechter Knoten kann nicht besser aufgeteilt werden
 - → "leaf node"
- linker Knoten wird aufgeteilt
 "Körpergröße >= 68 inches"
 - ja (linker Unterknoten): 36% der Patienten, davon 14% Frauen
 - nein (rechter Unterknoten): 18%
 der Patienten, davon 51%
 Frauen



- Schritt 3
- rechter Knoten wir aufgeteilt"Hüftumfang < 44 inches"
 - nein (rechter Unterknoten): 7% der Patienten, davon 76% Frauen
 - ja (linker Unterknoten): 10% der Patienten, davon 33% Frauen
- linker Knoten wird aufgeteilt "Hüftumfang < 50 inches"
 - ja (linker Knoten): 33% der
 Patienten, davon 10% Frauen
 - nein (rechter Knoten): 3% der
 Patienten, davon 64% Frauen



- kompletter Durchgang
- folgende Variablen wurden benutzt
 - Größe
 - Hüftumfang
 - Gewicht
 - Cholesterin/HDL ratio
 - BMI (small/medium/large)
- Einige davon wurden mehrfach benutzt
 - Größe
 - Hüftumfang



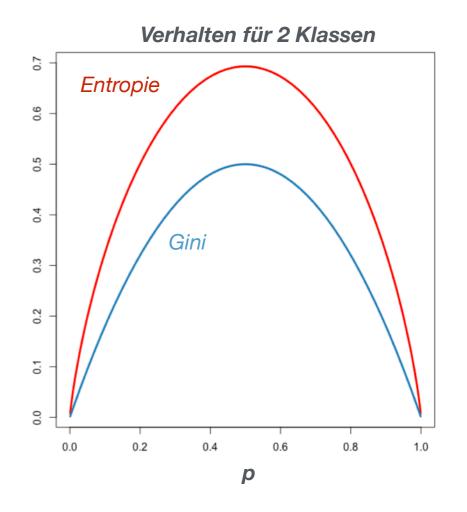
Frage 1 wie wird das Teil-Kriterium augewählt?

- Variable (und Schwellenwert), die die "Reinheit" der Unterknoten am meisten erhöht
 - maximale Reinheit: nur eine Klasse vorhanden ("Frauen")
 - maximale Unreinheit: perfekte Mischung (50% Männer, 50% Frauen)
- Maß (je kleiner, desto reiner)
 - Gini-Index:

$$G_i = 1 - \sum_{k=1}^{n} p_{i,k}^2$$

• Entropie:

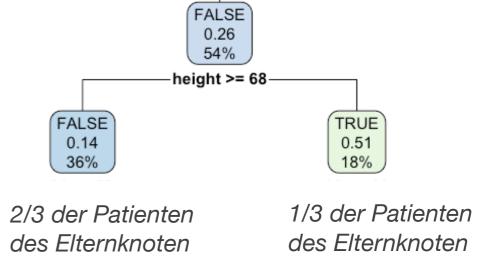
$$H_i = -\sum_{k=1}^n p_{i,k} \log(p_{i,k})$$
 Anteil der Klasse k am Knoten i



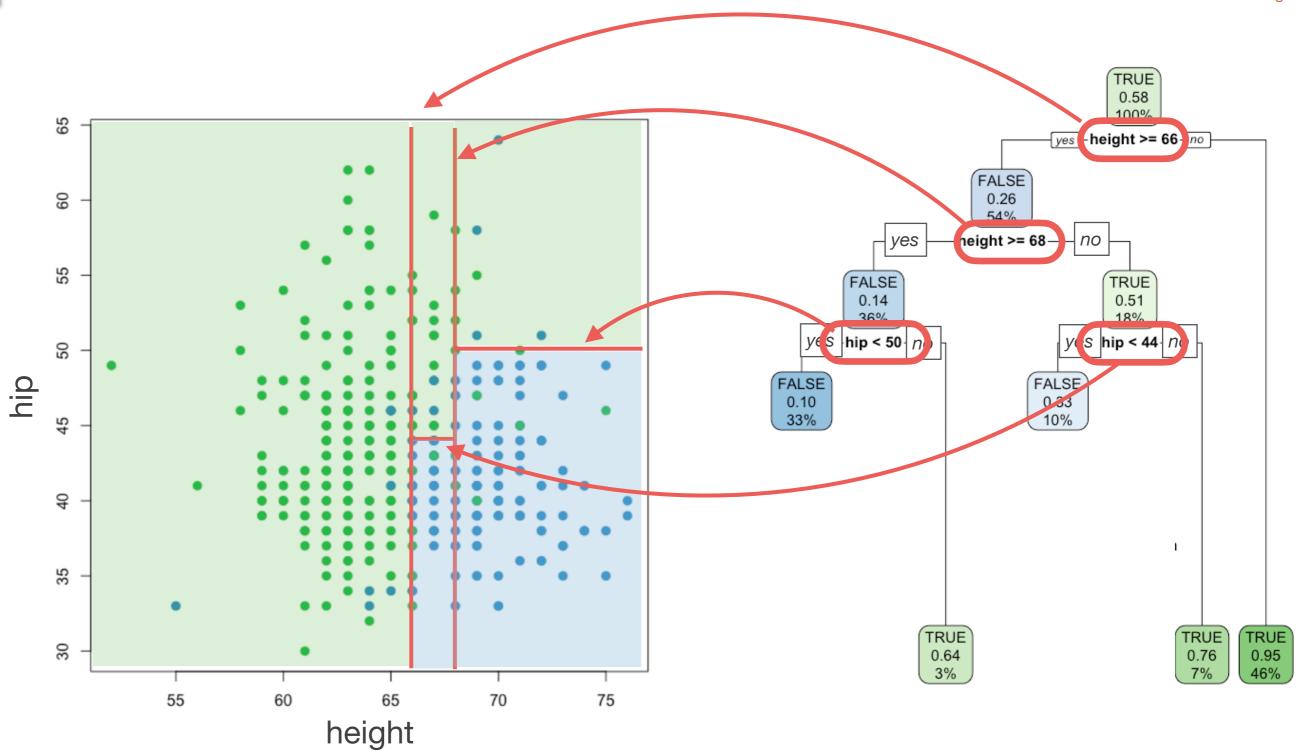
Gini-Koeffizient: Beispiel

- Elternknoten
 - 26% Frauen, 74% Männer
 - Gini: $G = 1 (0.26)^2 (0.74)^2 = 0.3848$
- Linker Unterknoten
 - 14% Frauen, 86% Männer
 - Gini: $G_L = 1 (0.14)^2 (0.86)^2 = 0.2408$
- Rechter Unterknoten
 - 51% Frauen, 49% Männer
 - Gini: $G_R = 1 (0.51)^2 (0.49)^2 = 0.4998$
- Gewichteter Gini decrease (je kleiner, desto besser):

$$\Delta G = G - \frac{2}{3} G_L - \frac{1}{3} G_R = 0.0577$$



kein anderes Kriterium würde zu einer so starken Verbesserung der purity führen!



Frage 2: wie lange wird aufgeteilt?

- Das Teilen der Knoten könnte so lange weitergeführt werden, bis jeder Knoten perfekt rein ist (evt. nur noch 1 Datenpunkt enthält):
 - perfekte Klassifizierung auf dem Trainingsdatensatz
 - aber: würde sich schlecht auf weitere Datensätze verallgemeinern lassen! ("overfitting")
- Daher werden Bedingungen gesetzt, wann das Teilen gestoppt wird:
 - maximale Tiefe des Baumes erreicht; oder
 - Jeder Knoten erreicht eine minimale Anzahl an Datenpunkten; oder
 - Teilung eines Knotens würde zu keiner signifikanten Verbesserung der Reinheit führen.
- Diese zusätzlichen Parameter nennt man Hyperparameter; sie müssen während des Trainings optimiert werden

Frage 3: wie kann das Modell benutzt werden?

Mehrheitsregel!

Patient 423:

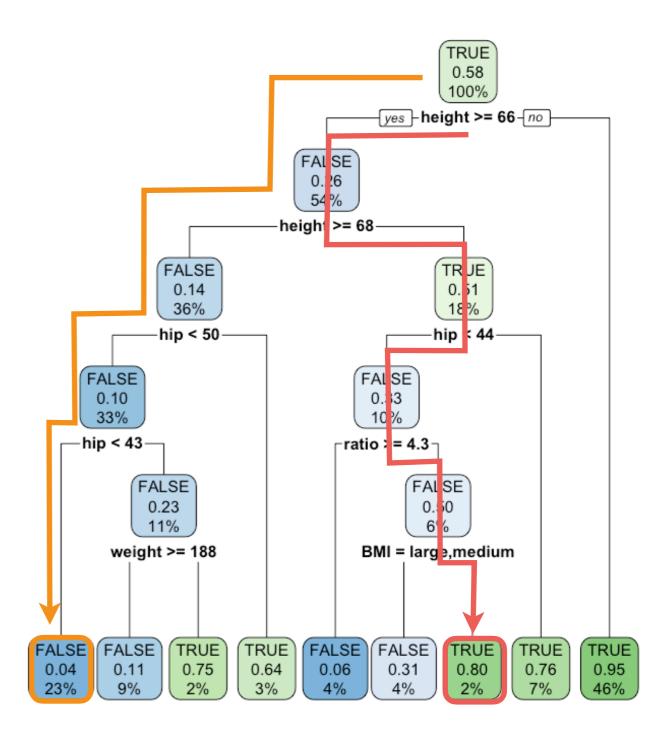
- Größe = 67
- Hüftumfang = 43
- Gewicht = 180
- ratio = 3.8
- BMI = small
 - → Frau

Patient 677:

- Größe = 69
- Hüftumfang = 51
- Gewicht = 180
- ratio = 3.8
- BMI = small

→ Mann

diese Informationen wurden in diesem Fall nicht benutzt!



Frage 4: wie gut funktioniert das Modell?

• Wie gut funktioniert es auf dem Trainingsdatensatz?

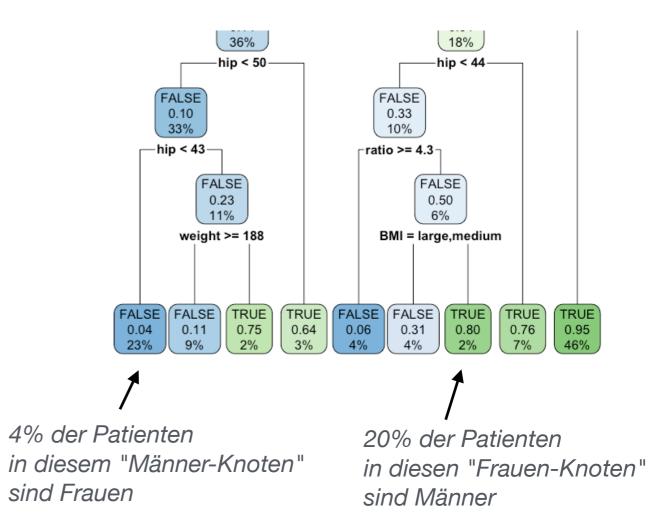
Wahrer Wert

Vorhersage

	Frau	Mann
Frau	220	14
Mann	25	144

Klassifizierungsfehler: $\frac{14 + 25}{403} = 0.0968$

Genauigkeit:
$$\frac{220 + 144}{403} = 0.9032$$



Einige der Datenpunkte aus dem Trainingsdatensatz werden falsch klassifiziert!

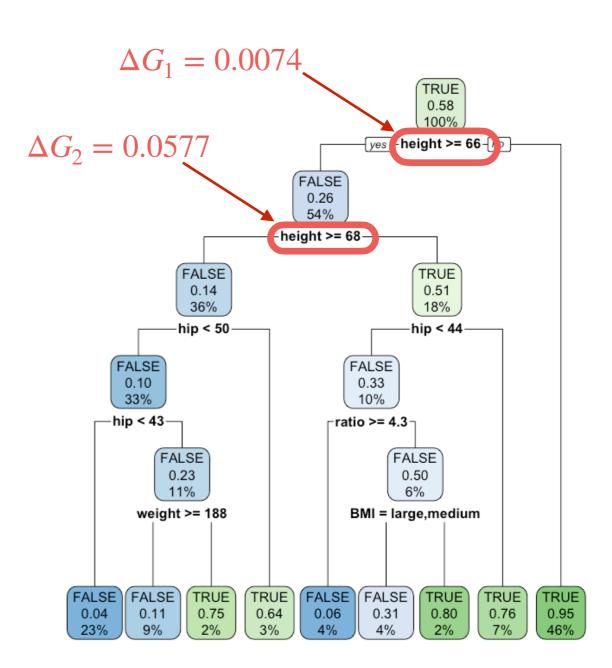
Frage 5: was sind die wichtigen Variablen?

- Entscheidungsbäume sind "white-box"
 Modelle
- Die Vorhersagekraft der Merkmale kann bestimmt werden
- Durschnittliche Verbesserung der Purity an den Knoten, an denen ein Merkmal verwendet wurde:

$$\Delta G_{height} = 1 \cdot \Delta G_1 + 0.54 \cdot \Delta G_2$$

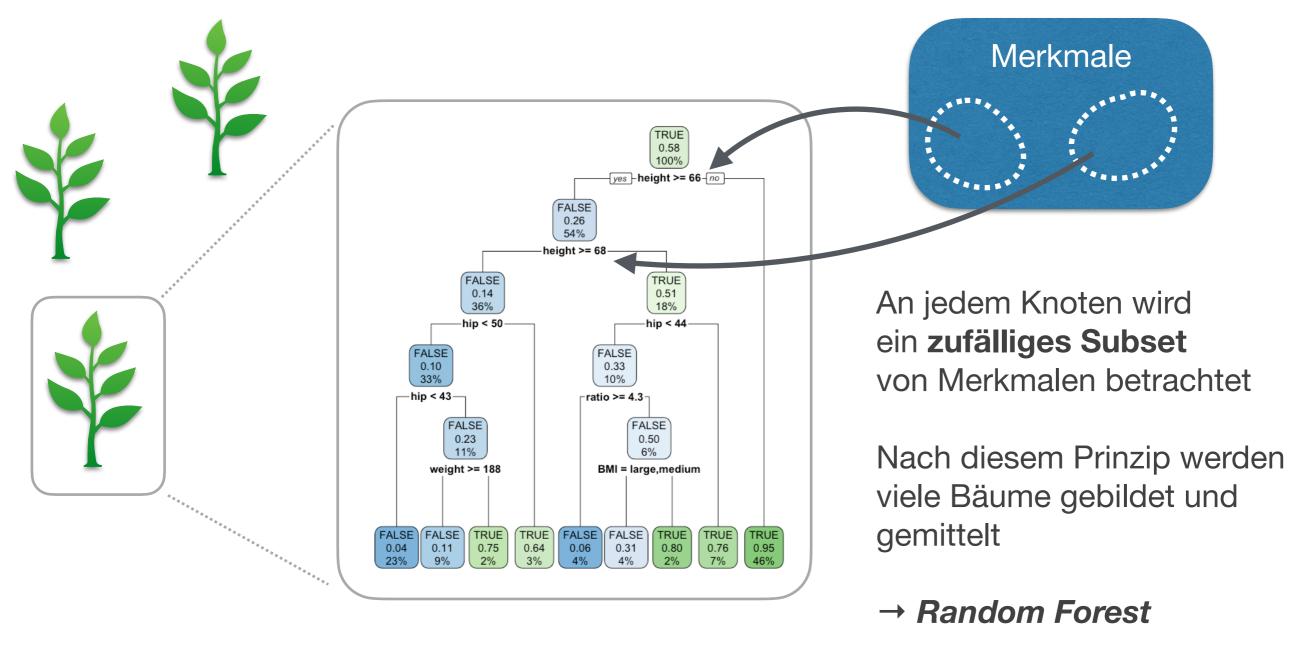
$$\begin{array}{c} & & \\$$

Alle benutzten Merkmale können so untersucht werden → Ranking



Emsemble Methoden

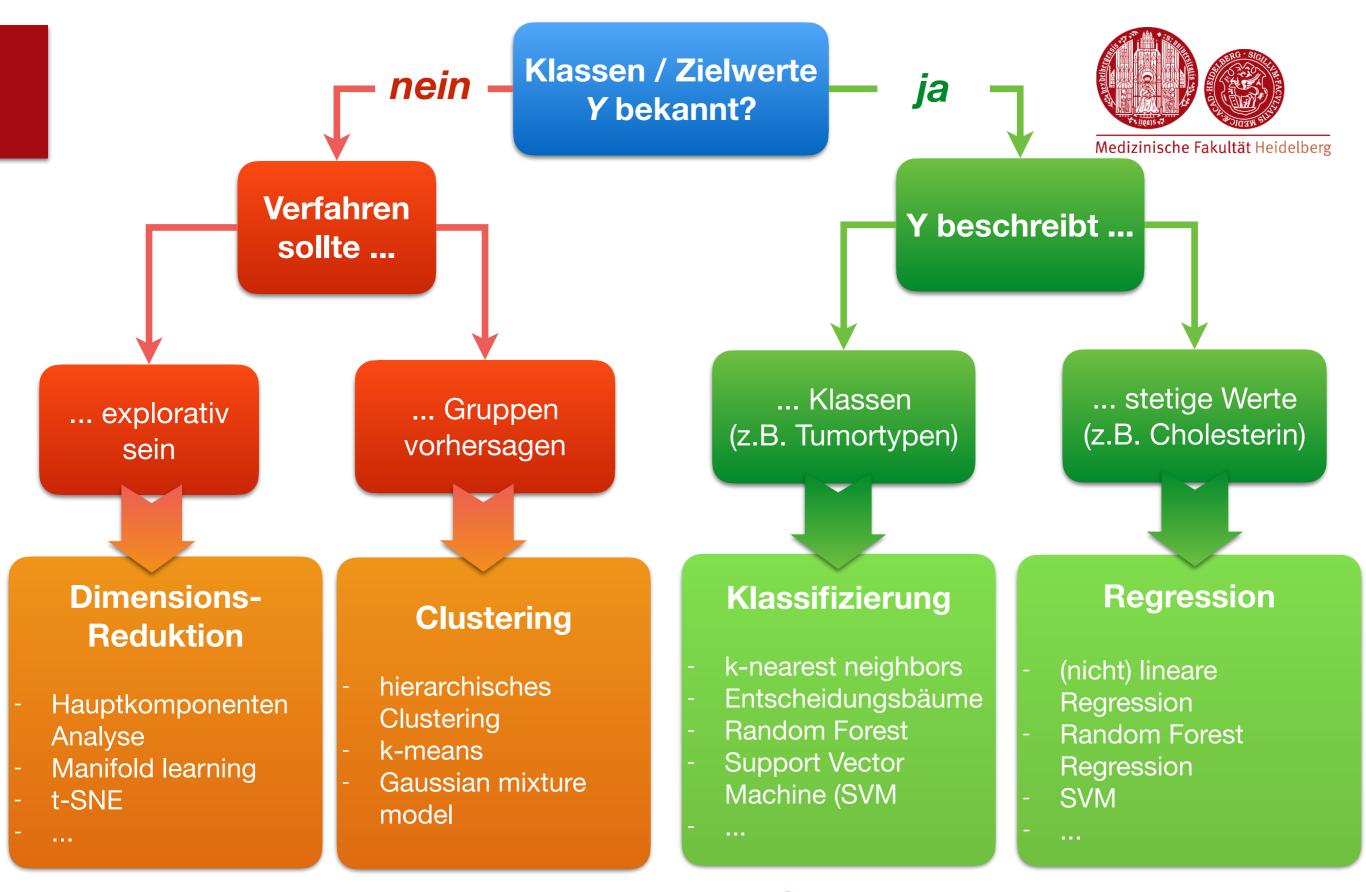
- Entscheidungsbäume haben eine Tendenz zum Overfitting
- Lösung: über viele Bäume mitteln → Random Forest



7. Zusammenfassung

Take-home messages

- Unterscheidung supervidiertes/nicht-supervidiertes Lernen
 - supervidiert: Labels teilweise bekannt
 - nicht-supervidiert: Labels nicht-bekannt
- Lernverfahren sollen eine Kostenfunktion minimieren (oder Scorefunktion maximieren)
 - root-mean-square error / mean average error bei Regression
 - accuracy / precision / recall bei Klassifizierung
- Varianz/Verzerrung Dilemma
 - underfitting (zu einfaches Modell) → hohe Verzerrung
 - overfitting (zu komplexes Modell) → hohe Varianz; Modell lässt sich nicht verallgemeinern
- Benutzung von Trainings- / Validierungs- / Test-Datensatz
 - k-fold cross-Validierung
 - LOOCV



Nicht-supervidierte Verfahren

Supervidierte Verfahren